
Modelling the Acquisition of Natural Language

Categories

Trevor Michael Fountain
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2013





Abstract

The ability to reason about categories and category membership is fundamental to hu-

man cognition, and as a result a considerable amount of research has explored the ac-

quisition and modelling of categorical structure from a variety of perspectives. These

range from feature norming studies involving adult participants (McRae et al. 2005) to

long-term infant behavioural studies (Bornstein and Mash 2010) to modelling experi-

ments involving artificial stimuli (Quinn 1987).

In this thesis we focus on the task of natural language categorisation, modelling

the cognitively plausible acquisition of semantic categories for nouns based on purely

linguistic input. Focusing on natural language categories and linguistic input allows us

to make use of the tools of distributional semantics to create high-quality representa-

tions of meaning in a fully unsupervised fashion, a property not commonly seen in tra-

ditional studies of categorisation. We explore how natural language categories can be

represented using distributional models of semantics; we construct concept representa-

tions for corpora and evaluate their performance against psychological representations

based on human-produced features, and show that distributional models can provide a

high-quality substitute for equivalent feature representations.

Having shown that corpus-based concept representations can be used to model cat-

egory structure, we turn our focus to the task of modelling category acquisition and

exploring how category structure evolves over time. We identify two key properties

necessary for cognitive plausibility in a model of category acquisition, incrementality

and non-parametricity, and construct a pair of models designed around these con-

straints. Both models are based on a graphical representation of semantics in which

a category represents a densely connected subgraph. The first model identifies such

subgraphs and uses these to extract a flat organisation of concepts into categories; the

second uses a generative approach to identify implicit hierarchical structure and ex-

tract an hierarchical category organisation. We compare both models against existing

methods of identifying category structure in corpora, and find that they outperform

their counterparts on a variety of tasks. Furthermore, the incremental nature of our

models allows us to predict the structure of categories during formation and thus to

more accurately model category acquisition, a task to which batch-trained exemplar

and prototype models are poorly suited.
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Chapter 1

Introduction

How the mind organises concepts into categories and uses those categories to make pre-

dictions is one of the most deeply studied questions in cognitive science. This task of

categorisation underlies a broad swath of human cognition – most, if not all, cognitive

tasks are either some special case of general-purpose categorisation or use knowledge

about categories to enable some other task. Categories enable us to extrapolate from

our past experiences, allow us to identify stimuli we’ve not previously encountered,

and provide us with a means of predicting the properties of novel stimuli (Smith and

Medin 1981). Without categories we might know the objects we had encountered in

the past (e.g. our morning coffee) but each time we encountered some new object we

would find ourselves at a loss, unable to connect our past experiences with this new

item. No matter how many cups of coffee we’ve consumed in the past, without the

ability to form meaningful categories we’d have no way of applying our knowledge of

caffeinated beverages and their uses to the hot, milky liquid in front of us. By recog-

nising the mysterious morning cup as a coffee (read: as an object belonging to the

category of things collectively referred to as coffee), we can make a number of pre-

dictions about its properties – it is likely to be both tasty and rejuvenating – and act

accordingly. Likewise, we can apply our ability to recognise entirely novel instances

of high-level categories (e.g. hot beverages) based on their similarity to familar objects

to make predictions about their unobserved properties (e.g. that tea, like coffee, should

be served with milk).

Such categories embody much of our knowledge about the world. While the cor-

rect identification of a caffeinated beverage may not seem a monumental achievement

of human intelligence, the process involved in drawing the inference is surprisingly

complex. What we call ‘categorisation’ is really two (related) tasks: recognising a

1



2 Chapter 1. Introduction

novel object as an instance of a particular category and using that category to predict

unobserved properties. In recognising a novel object we have access to only a handful

of observed features, limited by the domains of the senses: e.g. that it has a brown

colour, flows like a liquid, and radiates heat. To predict the value of complex, unob-

served features – that the object has a pleasant taste or that, after drinking it, we will

feel energised – based on only these limited observations is no mean feat.

In this thesis we address the first task, that of identifying the category or categories

to which a novel object belongs. While traditional research on categorisation tends to

involve either real-world objects (Eimas and Quinn 1994a, Quinn and Eimas 1996) or

artificial stimuli (Quinn 1987, Posner and Keele 1968, Bomba and Siqueland 1983),

we focus instead on categories acquired from natural language stimuli, i.e. words, a

task we refer to as natural language categorisation. While this focus is relevant to

a number of specific tasks (e.g. infant word learning (Mervis 1987)) restricting our-

selves to linguistic categories in this fashion allows us to quickly and flexibly construct

representations of word meaning using the tools of distributional semantics. Where

traditional models of categorisation are restricted to concepts for which complex fea-

ture data is available (e.g. the feature norms of McRae et al. (2005) or Ruts et al.

(2004)), extracting semantic representations from corpora allows us to build categori-

sation models with theoretically unlimited scope, and to specifically explore the impact

of the linguistic environment on category formation.

In this introductory chapter we summarise the principle claims set forth in the

remainder of the thesis and give an overview of where this work fits within the broader

study of categorisation.

1.1 Categorisation

Any attempt to concisely summarise the study of categorisation will be no more suc-

cessful than, say, a brief overview of physics. The study of how the mind forms and

uses categories is so fundamental to human cognition that it has its roots in every-

thing from neuroscience to child psychology – more than enough to fill a good-sized

textbook. Nevertheless, this section sets the background for remainder of the thesis

through an overview of the relevant context. We begin by discussing three common

views on category representation, followed by a brief discussion of category acqui-

sition (which informs Chapters 3 and 4) and natural language categorisation (which

informs Chapter 2).
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1.1.1 Theories of Categorisation

General models of categorisation tend to be organised into one of a number of theories

based on the abstract representations used to define categories. Before we can discuss

the contributions of this thesis or the body of work into which it fits, a brief overview

of the standard categorisation theories may be beneficial. While most of the work dis-

cussed in Chapters 2-4 falls squarely under the exemplar theory, Chapter 2 includes a

comparison of exemplar and prototype models for which this overview may be ben-

eficial. At any rate, the division between the these two (relatively) modern theories

underlies almost attempts to model categorisation and category acquisition.

Attempts to define an appropriate representation for categories date back to Aristo-

tle’s Categoriae (n.d.). In this view, the so-called classical approach to categorisation,

contends that categories can be represented by a list of features which are both neces-

sary (in that an object lacking a requisite feature for a particular category is excluded)

and sufficient (in that any object possessing all of the specified features is included).

While this provides a suitable representation for certain types of well-defined cate-

gories – geometric shapes, mathematical formulae, and biological entities – construct-

ing a list of necessary and sufficient features for the often-fuzzy real-world categories

upon which people rely, not to mention ill-defined categories like sports, quickly be-

comes impossible.

Indeed, the ‘necessary and sufficient’ approach to category definition was famously

skewered by Wittgenstein (1953), who considered the features required to accurately

define the concept of games. As an example, consider the obvious features which one

might attribute to games: that they involve two or more people, are competitive, and

are a leisure activity. Each of these features has an equally obvious counterexample;

card solitaire is a non-competitive game involving a single player, while certain casino

games can be played professionally. Wittgenstein uses this example (among others) to

argue the insufficiency of the classical approach.

For this deficiency and others, the classical view of categories has been almost en-

tirely supplanted by a pair of more recent approaches to the problem of category repre-

sentation: the prototype (Rosch 1973) and exemplar (Medin and Schaffer 1978) views.

In the prototype view, categories are represented using a single, prototypical instance;

this instance, the category’s ‘prototype’, may be a single discrete member which best

typifies the category’s distinguishing features or an abstraction whose semantic repre-

sentation somehow entails those of the category’s members, e.g. the category label or
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centroid in which the relevant features of the category (i.e. those features which would

have been present in the category’s classical representation) are weighted according

to their relative importance within the category. Membership in the category is de-

termined by comparing the observed features of a possible member against those of

the prototype; if the (weighted) number of matching features surpasses some threshold

then we consider the stimuli to be a member of the category.

Significantly, the prototype approach to categorisation overcomes the problematic

‘necessary and sufficient’ restriction of classical categories. To return to our earlier

example, under the classical view we would have difficulty correctly identifying an

iced coffee as a kind of coffee, as it lacks the necessary hot temperature feature; under

the prototype view, however, it possess enough other, highly-weighted features of the

category – it is still brown, still liquid, and still leaves us feeling energised – to be cor-

rectly categorised. Furthermore, a prototype model can predict category judgements

that, though straightforward for people, prove impossible for a classical model, like in-

transitivity of category membership (e.g. Big Ben is a clock, and clocks are furniture,

but Big Ben is not furniture; see Hampton (1982)) or differences in typicality between

members of the same category (e.g. robins and penguins are both birds, but people

are significantly more likely to list robin than penguin when asked to name birds; see

Barsalou (1985)).

Contrasting the prototype approach are exemplar models, in which the notion of

a single abstract representation for categories, central to both classical and prototype

models, is abandoned entirely. Instead, categories in an exemplar model are repre-

sented by a list of previously encountered members, and novel stimuli are judged to

be members of a category based on their similarity to other, known members; our cup

of morning brew is not a coffee because it possesses some specified features or meets

some criteria but simply because it is similar to coffees we have had in the past. Ex-

emplar models can account for the same phenomena that are explained by prototype

models; differences in typicality stem from underlying differences in similarity (a pen-

guin is only moderately similar to other birds). Similarly, intransitivity can be handled

simply by changing the features used to perform the similarity calculation (e.g. Big

Ben is similar in some respects to clocks, but clocks are similar in a different respect

to furniture).

Of course, it is likely that the cognitive mechanism underlying category represen-

tation relies upon neither exemplars nor prototypes, but rather on some interpolation

between these extremes. Taken at face value, the exemplar approach suggests that
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every instance of a category is stored (Reed 1972); other interpretations consider cat-

egories in which only the most typical instances are stored (Rosch 1975) or in which

many instances are stored to varying degrees of completeness (Komatsu 1992). Al-

ternatively, Vanpaemel and Storms (2008) propose a model in which the complexity

of representation varies across categories, with complex categories represented using

clusters of exemplars and simpler categories using a single prototype. Their model

neatly encompasses both pure exemplar and prototype models, but at significant com-

putational cost (Stukken et al. 2011).

Finally, it is worth mentioning the knowledge approach (or, somewhat amusingly,

the theory theory) to categories, which asserts that categories are formed on the basis of

people’s general knowledge about the world, rather than on a single idealised member

(i.e. a prototype) or an exhaustive list of possible members (i.e. exemplars). This view

is perhaps best illustrated by what Barsalou (1985) called goal-derived categories:

categories that are defined based on how their members fill some externally-determined

role. Consider the category of breakfast foods, consisting of concepts like bacon, eggs,

or grits. This is quite clearly a category people can and do form, and about which they

can make meaningful judgements, yet there is very little similarity between members,

making it difficult to account for using an exemplar model, nor is it easy to construct

a prototypical representation for possible breakfast foods. Instead, this category seems

to be based on people’s general knowledge of food and culture – a much more complex

abstraction than can be encapsulated by either exemplars or prototypes. Unfortunately,

we devote little time to discussions of this approach, as it is diffucult to model the

formation of knowledge-based categories without a more complete model of the world

and the acquisition of this sort of world knowledge is considerably beyond the scope

of this thesis.

1.1.2 Category Acquisition

Investigations into the mechanisms and processes involved in the acquisition of cat-

egories are hamstrung by the difficulty of experimentally observing infants’ mental

models of the world. Necessarily, studies of category formation in early infancy rely on

indirect means of assessing infants’ familarity or surprise when presented with known

or novel stimuli. In most cases infants are first exposed to identifiable members of a

category (the ‘training’ phase) and then presented with a series of items from either the

familar category or its contrast (the ‘testing’ phase). Differences in response between
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familar and unfamilar items – the order in which items are handled in a sequential

touching task (Starkey 1981), or the duration of visual fixation (Eimas et al. 1994) –

allow researchers to determine the extent to which the child has generalised his or her

experiences with the training exemplars to the category as a whole.

Unfortunately, such studies are often conducted using categories to which infants

are likely to have had some prior exposure, e.g. animals (Eimas and Quinn 1994b)

or furniture (Behl-Chadha 1996). As a result it is unclear the extent to which infants’

performance is based on their existing knowledge of these categories or on whatever

discriminating features they may have observed during the (highly structured) train-

ing phase of the study. If the former, the training phase might only serve to condition

participants to expect the familar category, with differences in response explained bet-

ter explained by priming or information access cost (Wood et al. 2010). For most

experiments involving infants’ categorisation of real-world stimuli, it is difficult or im-

possible to rule out the influence of existing knowledge on category formation (Quinn

2004). Experiments involving adult participants are if anything more problematic, as

adult category learners have a wealth of experience and world knowledge which may

(perhaps indirectly) influence category formation.

However, it is clear that infants do not require previous exposure to exemplars,

even for novel categories, to discriminate between contrasting categories. Bornstein

and Mash (2010) describe two classes of categorisation tasks, experienced-based and

incremental (for the latter they use the term on line). Experience-based tasks involve

distinct training/testing phases, in which participants can apply pre-existing knowl-

edge or experience (arising either from the training phase or simply from their world

experience) to the task of disciminating between categories. Incremental tasks, by con-

trast, are those in which participants can rely only on their immediate perceptions of

the stimuli, and must form representations for novel categories while simultaneously

applying those categories to discriminate between stimuli.

Exploring the differences in performance between these two tasks, Bornstein and

Mash (2010) investigated the effect of previous exposure to a novel category in 3- to

5-month old infants and found insignificant differences in performance in categorising

novel exemplars between infants with at-home experience of a category and those first

encountering it in the laboratory. Both groups were able to discriminate equally well

between the category and its contrast, and neither group demonstrated any significant

preference for exemplars of either category. These results contradict the expectation

that prior exposure to a category should facilitate discrimination between its exemplars
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and those of a contrasting category, and suggest that infants’ categories are learnt and

applied in an incremental fashion.

1.1.3 Natural Language Categorisation

Most experimental work on category modelling and acquisition has revolved around

laboratory experiments involving either real-world objects (e.g. children’s toys; Starkey

1981), perceptual abstractions (e.g. photographs of animals; Eimas and Quinn 1994b),

or abstract, artificial stimuli (e.g. dot patterns or geometric shapes; Posner and Keele

1968 and Bomba and Siqueland 1983, respectively). In most cases researchers’ us-

ing abstract or artificial stimuli to explore human categorisation would not assert that

participants possess a distinct mechanism for distinguishing between categories of (for

example) binary strings, but rather that the task invokes a single, global mechanism for

learning and applying categories.

Our own approach is no different, in that we treat word meaning as a proxy for

conceptual structure (Murphy 2002) and do not suggest that (semantic) categories of

words differ significantly from their categories involving their real-world referents. We

refer to this task, of organising words into categories based on their semantics, as nat-

ural language categorisation. While the idea of modelling categories using words as a

stand-in for their referents is of course not a new one, explicitly viewing categorisation

as the task of organising words into categories based on meaning allows us make use

of powerful ideas from artificial intelligence and computational linguistics.

Previous work that could be described as natural language categorisation has a re-

curring theme: the use of feature norms to construct semantic representation for word

meaning. Feature norms are traditionally collected through norming studies, in which

participants are presented with a word and asked to generate a number of relevant fea-

tures for its referent concept (The most notable of these is probably the multi-year

project of McRae et al. (2005), which collected and analysed features for a set of 541

common English nouns). The results of such studies can be interesting in their own

right, as the frequency and distribution of generated features can provide considerable

insight into the nature of participants’ categories – but they can also provide material

for evaluating prototype and exemplar models. By using feature norms as a proxy for

people’s mental representations of concepts (i.e. representations based on their percep-

tual experiences) we can use categorisation models to predict exemplar and prototype

effects.



8 Chapter 1. Introduction

Existing research into natural language categorisation has used such featural rep-

resentations to explore a wide range of categorisation-related phenomena. Heit and

Barsalou (1996) demonstrated their instantiation principle within the context of natu-

ral language concepts, Storms et al. (2000) contrasted exemplar and prototype models

using a task-based evaluation, and Cree et al. (1999) used feature-based representations

to model semantic priming. In all of these models words are used as a proxy for real-

world stimuli, and feature norms used as a proxy for people’s perceptual experiences

of those stimuli. Our approach is to replace feature norms with representations derived

from words’ context in text corpora, i.e. to use distributional semantics to approxi-

mate people’s perceptual representations of real-world stimuli. While this approach

has been criticised as an inaccurate view of how people acquire and use categories –

it is clear that both linguistic and perceptual input can be used to learn categories – it

has been shown that the information encoded in people’s perceptual representations of

concepts is often redundantly encoded in their linguistic experience of those concepts

(Riordan and Jones 2011). The use of feature norms as a proxy for people’s perceptual

representation of concepts can itself be problematic, as participants in norming stud-

ies tend to under-report or ignore features which do not help to distinguish members

of the category but are nevertheless frequently present (McRae et al. 2005). Further-

more, modelling category acquisition using natural language concepts enables us to

explore aspects of categorisation which might otherwise prove problematic (e.g. our

investigation of incrementality in Chapter 3).

1.2 Central Claims

This thesis addresses the task of natural language categorisation. Where traditional

research into category structure and acquisition has relied on either real-world or ar-

tificial stimuli using manually-annoted features, we investigate the use of words as

stimuli and extract semantic representations from corpora. Following in the tradition

of Rational Analysis (Anderson 1991b) we adopt a modelling approach in which we

focus on predicting human performance on categorisation tasks rather than positing an

underlying mechanism for general category acquisition.

Our overall objective in this thesis is to model the acquisition of natural language

categories from linguistic input in a cognitively plausible fashion, but before we can

attempt this we first need to determine an appropriate representation for concepts. Our

investigations into the suitability of various distributional methods for constructing se-
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mantic representations lead to the first claim of this thesis, that corpus statistics, e.g.

word co-occurrence, can be used to construct representations of meaning from which

useful semantic categories can be learnt. While most models of categorisation rely

on manually-produced feature encodings to represent meaning the use of text corpora

can provide an attractive alternative to feature norms, which are generally expensive,

time-consuming, and difficult to obtain. We demonstrate this claim by constructing

alternative representations for a large set of concepts for which high-quality feature

norms already exist, using various easily-obtained corpus statistics, e.g. document- or

topic-level co-occurrence. We evaluate these representations within a pair of simple

exemplar and prototype models, and show that they can provide an acceptable alterna-

tive to their featural equivalents.

With the question of how to appropriately construct concept representations for

natural language concepts thus settled, we move on to the task of modelling the ac-

quisition of natural language categories. We formulate category acquisition as an in-

cremental task, i.e. one in which there are no distinct training and testing phases and

the agent learns and applies category information simultanously. While this is similar

in nature to the sequential touching task used to investigate category formation in in-

fants (Starkey 1981), the idea of modelling category formation incrementally is rarely

used in the context of category learning in either infants (Murphy 2002) or adults. In-

stead, the nature of laboratory-based categorisation studies tends to result in models of

categorisation in which some background knowledge or experience (i.e. the training

phase) is used to construct mental representations of categories, which are then em-

ployed to solve some subsequent task (i.e. the testing phase). Contrary to this trend,

we model category acquisition as an explicitly incremental task. We illustrate the in-

crementality of our models by applying them to the task of predicting interim category

structure during category acquisition, in a task in which participants are asked to infer

category structure based on limited background knowledge. While our initial models

learn only a flat, non-overlapping category structure (Chapter 3), we later develop a

model capable of predicting complex, hierarchical structure (Chapter 4).

Both our flat and hierarchical models represent concepts and categories as nodes

and sub-graphs within a broad graphical structure. Based on our success with these

representations, our final claim in this thesis is that such graphical representations can

be used to gain greater insight into category acquisition. Our representations are based

on the semantic networks, in which concepts are represented as nodes within a graph

and relations between concepts as edges between their corresponding nodes. The use
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of this representation is closely intertwined with the previous claim, in that our use

of a graphical representation for concepts eases our modelling of category acquisition

as an incremental task. We illustrate this claim by constructing incremental models

of category acquisition using both graph-based and probabilistic representations and

demonstrating that our graph-based approach, in addition to generally outperforming

a comparable probabilistic approach, provides considerable flexibility in that it allows

our models to bring in external information in an unsupervised fashion. Using a simple

semantic network representation, our models can induce complex, hierarchical struc-

tures in which the relationship between high-level categories is automatically inferred.

1.3 A Note on Terminology and Typography

For the sake of consistency I have attempted to use the word concept throughout the

thesis in reference to an observed stimulus; in the context of natural language cate-

gorisation – the categorisation of natural language concepts – concept and word can

be used interchangeably. Additionally, I use the term exemplar to denote concepts

belonging to a specific category. While a category is quite clearly also a concept, I

use the word category to denote a higher-level organisation of related concepts; e.g.

the concepts (or exemplars, or words) apple, orange, and pear belong to the category

FRUIT.

Where it is important this distinction be made clear I follow the typographic con-

vention of the previous sentence: concepts are written in italics, while CATEGORIES

are written using small caps. This convention is especially helpful in the face of cat-

egories with hierarchical organisation, in which categories themselves represent con-

cepts organised into higher-level categories, themselves representing concepts at a yet-

higher level, ad nauseum.

1.4 Overview of the Thesis

This thesis is divided into two parts: Chapters 2, which explore low-level details of

natural language categorisation, and Chapters 3 and 4, each of which presents a cogni-

tively plausible model of natural language category acquisition.

Chapter 2 introduces the concept of natural language categorisation and surveys

a number of distributional methods for automatically constructing representations of

word meaning from corpora. We compare the relative performance of simple proto-
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type and exemplar models using each of these representations on a set of three standard

categorisation tasks: typicality rating, exemplar generation, and category naming. Our

results suggest that simple co-occurrence spaces can provide an acceptable approxi-

mation to more traditional high-quality (but expensive to obtain) feature norms.

Chapter 3 makes use of the best of the representations developed in the preceed-

ing chapter to perform our first modelling studies of category acquisition, extending the

clustering and similarity based approaches explored in the previous chapter to cover

novel stimuli and an unspecified number of categories. Our evaluations in Chapter

2 relied on oracle lists for assigning exemplars to categories, limiting us to simple

task-based evaluations and making it difficult to perform an effective analysis of the

evaluated representations for constructing categories from novel stimuli. Conversely,

the models we develop in this chapter make use of similar semantic representations to

those of the preceeding chapter but focus explictly on modelling category formation

and on the acquisition of semantics for novel stimuli. We identify two key properties

required for cognitive plausibility in modelling category acquisition, incrementality

and non-parametricity, and demonstrate how our models capture both of these as-

pects. We present two models based on very different internal representations, and

evaluate both in a series of experiments to reflect adult and child category acquisition

in incremental and non-incremental contexts. Our results show that an unsupervised,

graph-based model of category acquisition using simple, corpus-derived semantic rep-

resentations can approximate human performance on numerous categorisation tasks.

Chapter 4 explores the difficulties inherent in constructing categories with more

complex internal structure, and presents a model of category acquisition capable of in-

ducing an organisation of flat categories into a full, hierarchical categorisation. A sig-

nificant drawback of the models we proposed in the preceeding chapter is their inabil-

ity to learn anything other than a flat organisation of concepts into categories, making

them little more than cognitively-informed clustering algorithms. Our challenge there-

fore becomes the construction of a model which is capable of acquiring more complex

(and correspondingly more plausible, for adult learners) category structure while main-

taining the key cognitive properties of incrementality and non-parametricity Our model

for doing so is based on the idea of Hierarchical Random Graphs (Clauset et al. 2008),

an algorithm for identifying complex hierarchical structure implicit in non-hierarchical

graphs (i.e. graphs without an explicit tree structure, root node, or parent-child rela-

tionship). As a result, we re-formulate the task of category acquisition as one of graph

partitioning, contrasting its presentation in the previous chapter as a clustering task.
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We evaluate induced hierarchies using various corpus-based representations against

a gold-standard hierarchy (WordNet), and conclude by demonstrating that our model

successfully replicates human performance on an incremental task similar to that of

Chapter 3.

Chapter 5 concludes by reviewing the claims set out in this introduction, looking

at each in light of results from the preceeding chapters. We summarise the central

claims and contributions of this thesis, and discuss their relevance within the greater

context of research on categorisation. We end the chapter (and this thesis!) by briefly

discussing possible avenues for future work, including the integration of perceptual

features into our distributional models and the extension of our hierarchical models to

cover more complex (e.g. knowledge-based) categories.

1.5 Published Work

Portions of the material discussed in this thesis has been previously published, in par-

ticular chapters 2, 3, and 4. Chapter 2 expands on the study of concept and cate-

gory representations presented in Fountain and Lapata (2010). Chapter 3 is based

on research described in Fountain and Lapata (2011), expanding that work to cover

additional corpora. The models and experiments presented in Chapter 4 previously

appeared in Fountain and Lapata (2012); they are supplemented in the thesis by an

experiment assessing human performance on an incremental version of the hierarchy-

induction, along with an elicitation study designed to demonstrate the difficulty of that

task.



Chapter 2

Representing Exemplars and

Categories

Considerable psychological research has shown that people reason about novel objects

they encounter by identifying the category to which these objects belong and extrap-

olating from their past experiences with other members of that category. This task of

categorisation, or grouping objects into meaningful categories, is a classic problem in

the field of cognitive science, one with a history of study dating back to Aristotle (n.d.).

This is hardly surprising, as the ability to reason about categories underlies human cog-

nition and is central to a multitude of other tasks, including perception, learning, and

the use of language (Smith and Medin 1981, Murphy 2002).

Numerous theories exist as to how humans categorise objects. These theories them-

selves tend to belong to one of three schools of thought. In the classical (or Aris-

totelian) view categories are defined by a list of “necessary and sufficient” features.

For example, the defining features for the concept BACHELOR might be male, single,

and adult. Unfortunately, this approach is unable to account for most ordinary us-

age of categories, as many real-world objects have a somewhat fuzzy definition and

don’t fit neatly into well-defined categories (Wittgenstein 1953, Rosch 1978, Smith

and Medin 1981).

Prototype theory (Rosch 1973) presents an alternative formulation of this idea,

in which categories are defined by an idealized prototypical member possessing the

features which are critical to the category. Objects are deemed to be members of

the category if they exhibit enough of these features; for example, the character-

istic features of FRUIT might include contains seeds, grows above ground, and

is edible. Roughly speaking, prototype theory differs from the classical theory in

13
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two ways: members of the category are not required to possess all of the features spec-

ified in the prototype, and a concept’s membership in a category is determined by a

probabilistic weighting of those features.

Although prototype theory provides a superior and workable alternative to the clas-

sical theory it has been challenged by the exemplar approach (Medin and Schaffer

1978). In this view, categories are defined not by a single representation but rather by a

list of previously encountered members. Instead of maintaining a single prototype for

FRUIT that lists the features typical of fruits, an exemplar model simply stores those

instances of fruit to which it has been exposed (e.g. apples, oranges, pears). A new

object is grouped into the category if it is sufficiently similar to one or more of the

FRUIT instances stored in memory. Sloman et al. (2001) show that both exemplar and

prototype models can provide the best explanation for participants’ performance on a

category naming task. In their studies, perceptual features (e.g. is rectangular or

made of glass) provide the best explanation when paired with an exemplar model,

while combined perceptual and functional features (e.g. used for holding solids)

perform equally well with both exemplar and prototype models. Their results suggest

that the question of how to represent category structure (whether by using a collection

of exemplars or a single, weighted prototype) is highly dependent on the choice of

feature representation.

This chapter focuses on these two related questions: how to represent words and

categories in a model of natural language categorisation. First, we investigate meth-

ods for constructing feature representations for words based on statistical analysis of

large collections of text. We hypothesise that these can provide a viable alternative

to manually-produced feature vectors for natural language categorisation. Specifi-

cally, we compare categorisation models that represent concepts using manual, human-

produced features against those using corpus-derived features produced by Latent Se-

mantic Analysis (LSA, Deerwester et al. 1990), Latent Dirichlet Allocation (LDA,

Griffiths et al. 2007c, Blei et al. 2003; a well-known topic model), Dependency Vec-

tors (DV, Padó and Lapata 2007; a semantic space that takes syntactic information into

account), and simple co-occurrence counts transformed using pointwise mutual infor-

mation (PMI). These semantic representations are used as input to two well-established

categorisation models, a simple exemplar model similar in construction to Medin and

Schaffer’s (1978) context model and a prototype model derived thereof. We evaluate

the performance of these two models on three adult categorisation tasks — category

naming, typicality rating, and exemplar generation — which have been previously
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modeled exclusively using feature norms (Storms et al. 2000). Our results indicate

that meaning representations constructed using simple co-occurrence tend to outper-

form more sophisticated alternatives whilst lagging behind feature norms by only a

small margin. Regardless of the representation employed, we also find that exemplar

models consistently outperform their prototype equivalents when using category labels

as a stand-in for more complex prototypical representations.

With these representations in hand, we then explore a number of methods for or-

ganising concepts into simple, flat categories using automatic clustering techniques. In

the experiments described about we rely on gold-standard categories produced by par-

ticipants in a category-naming experiment, information which is clearly not available

to category learners. Because automatically-induced categories are difficult to label,

we replace the task-based evaluation with a cluster F-score metric.

2.1 Related Work

In the past much experimental work has tested the predictions of prototype- and exemplar-

based theories in laboratory studies involving categorisation and category learning.

These experiments tend to use either perceptual stimuli (e.g. images of natural cate-

gories (Eimas and Quinn 1994b)) or artificial categories (e.g. patterns of semi-random

dots (Posner and Keele 1968) or abstract geometric shapes (Bomba and Siqueland

1983, Quinn 1987)). Models used in these experiments have focused on how cate-

gories and stimuli can be represented (Griffiths et al. 2007a, Sanborn et al. 2006) and

how best to formalize similarity. The latter plays an important role in both prototype

and exemplar models as generalising categories to include new objects depends on

correctly identifying previously encountered items.

In this chapter we focus on the less studied problem of modelling the categorisa-

tion of natural language concepts. In contrast to the numerous studies using perceptual

stimuli or artificial categories, there is surprisingly little work on how natural language

categories are learnt or used by adult speakers. A few notable exceptions are Heit

and Barsalou (1996) who use natural language concepts to illustrate that detailed in-

formation about individual exemplars is encoded in humans’ category representations,

Storms et al. (2000) who evaluate the differences in performance between exemplar

and prototype models on a number of natural categorisation tasks, and Voorspoels

et al. (2008) who model typicality ratings for natural language concepts. A common

assumption underlying this work is that the meaning of the concepts involved in cat-
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egorisation can be represented by a set of features (also referred to as properties or

attributes).

Featural representations like these have played a central role in psychological the-

ories of semantic cognition and knowledge organization and many studies have been

conducted to elicit detailed knowledge of features. In a typical norming study partic-

ipants are given a series of object names and for each object are asked to name all

the characteristic properties of that object. Although these feature norms are often in-

terpreted as a useful proxy of the structure of semantic representations, a number of

difficulties arise when working with such data (e.g. Sloman and Rips 1998, Zeigen-

fuse and Lee 2010). For example, the number and types of attributes generated can

vary substantially as a function of the amount of time devoted to each object, and there

are many degrees of freedom in the way that responses are coded and analyzed. It is

not entirely clear how people generate features and whether all of these are important

or relevant for representing concepts. Finally, multiple subjects are required to create

a representation for each word, which limits elicitation studies to a small number of

words and consequently the scope of any computational model based on these feature

norms.

Even when the stimuli in question are of an abstract or linguistic nature the features

elicited are assumed to be representative of the underlying referents. As an alternative

we propose to model the categorisation of linguistic stimuli according to their distri-

bution in corpora. Words whose referents exhibit differing features likely occur in

correspondingly different linguistic contexts; our question is whether these differences

in usage can provide a substitute for more traditional featural representations. Such

distributional representations have been previously shown to accurately model the ac-

quisition of category structure during child language acquisition (Borovsky and Elman

2006).

The idea that words with similar meaning tend to be distributed similarly across

contexts is certainly not a novel one. Semantic space models, among which Latent

Semantic Analysis (LSA, Landauer and Dumais 1997) is perhaps known best, op-

erationalize this idea by capturing word meaning quantitatively in terms of simple

co-occurrence statistics (between words and paragraphs or documents). While the dis-

tributional context employed often varies between models, from word (Erk 2009) or

depedency (Padó and Lapata 2007) input to more exotic representations such as hybrid

linguistic and perceptual features (Johns and Jones 2011) or models incorporating vi-

sual fixation (Chen et al. 2010), semantic space models have been shown to robustly
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predict performance effects for a variety of tasks involving word meaning (Jones et al.

2011, McRae and Jones 2012). More recently, topic models (Griffiths et al. 2007c)

have arisen as a more structured representation of word meaning. In contrast to more

standard semantic space models where word senses are conflated into a single repre-

sentation, topic models assume that words observed in a corpus manifest some latent

structure – that word meaning can be represented as a probability distribution over a

set of topics (corresponding to coarse-grained senses). Each topic is a probability dis-

tribution over words whose content is reflected in the words to which it assigns high

probability.

2.2 Representing Concepts

We explore four methods for constructing vector space representations of semantic

meaning for words, one based on human produced feature norms (Section 2.2.1) and

three based on various distributional methods. The distributional methods employed

use different levels of granularity to construct semantic representations; all four rely on

co-occurrence, but make use of frequency counts at the word (Section 2.2.2), document

(Section 2.2.3), topic (Section 2.2.4), and syntactic relation (Section 2.2.5) levels.

2.2.1 Feature Norms

Many behavioral experiments have been conducted to elicit semantic feature norms

across languages. One of the largest samples for English is that collected by McRae

et al. (2005), who collected feature norms 541 basic-level concepts – e.g. DOG and

CHAIR – with features collected in multiple studies taking place over several years. For

each concept several annotators were asked to produce a number of relevant features

(e.g. barks, has-four-legs, and used-for-sitting). The production frequency of

a feature given a particular concept can be viewed as a form of weighting indicating

the feature’s importance for that concept. A spatial representation of word meaning

can be extracted from the norms by constructing a matrix in which each row represents

a word and each column a feature for that word. Cells in the matrix correspond to the

frequency with which a feature was produced in the context of a given word. An exam-

ple of such a space is shown in Table 2.1 (a) (vector components represent production

frequencies, e.g. 12 participants thought has-legs is a feature of TABLE).
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(a) Feature Norms

has 4 legs used for eating is a pet ...

TABLE 12 9 0 ...

DOG 14 0 15 ...

(b) PMI

eat sit pet ...

TABLE 1.04 0.73 0.00 ...

DOG 0.73 2.18 1.84 ...

(c) LSA

Document 1 Document 2 Document 3 ...

TABLE 0.02 0.98 -0.12 ...

DOG 0.73 -0.02 0.01 ...

(d) LDA

Topic 1 Topic 2 Topic 3 ...

TABLE 0.02 0.73 0.04 ...

DOG 0.32 0.01 0.02 ...

(e) DV

subj-of-walk subj-of-eat obj-of-clean ...

TABLE 0 3 28 ...

DOG 36 48 19 ...

Table 2.1: Example semantic representations for table and dog using feature norms,

PMI-transformed co-occurrence (PMI), Latent Semantic Analysis (LSA), Dependency

Vectors (DV), and Latent Dirichlet Allocation (LDA). In the feature (a), PMI (b), and DV

(e) space values represent co-occurrence counts; in LSA (c) space values are tf-idf

scores; in LDA (d) values are probabilities.

2.2.2 Simple Co-occurrence

The most basic corpus-derived semantic space we consider is a matrix in which each

row represents a concept (or rather, a word) and each column a possible co-occurring

context word. Each entry correponds to the frequency with which the context word

appears within a context window of ±5 surrounding the concept. Following standard

practice (S and Kaimal 2012), we transform the raw frequency counts using pointwise

mutual information (PMI) in order to identify informative co-occurrences. Example

representations in this space are shown in Table 2.1 (b) (vector components represent
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d z w

M
N

α

β

Figure 2.1: Plate notation describing the Latent Dirichlet Allocation model (Griffiths et al.

2007c). d is the distribution of topics within a single document; z is the distribution over

observable words w for a topic. α and β function as smoothing parameters for d and w,

respectively. M and N indicate the number of documents and the number of observed

words in each document, respectively.

PMI-transformed frequency counts).

2.2.3 Latent Semantic Analysis

To create a meaning representation for words LSA constructs a word-document co-

occurrence matrix from a large collection of documents. Each row in the matrix rep-

resents a word, each column a document, and each entry the frequency with which the

word appeared within that document. Because this matrix tends to be quite large it

is often transformed via a singular value decomposition (Berry et al. 1995) into three

component matrices: a matrix of word vectors, a matrix of document vectors, and a

diagonal matrix containing singular values. Re-multiplying these matrices together us-

ing only the initial portions of each (corresponding to the use of a lower dimensional

spatial representation) produces a tractable approximation to the original matrix. This

dimensionality reduction can be thought of as a means of inferring latent structure

in distributional data whilst simultaneously making sparse matrices more informative.

The resulting lower-dimensional vectors can then be used to represent the meaning of

their corresponding words; example representations in LSA space are shown in Ta-

ble 2.1 (c) (vector components represent tf-idf scores).
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2.2.4 Latent Dirichlet Allocation

Where both our PMI and LSA spaces explicitly construct representations of semantic

meaning in a vector space based on co-occurrence, word meaning in a Latent Dirichlet

Allocation (LDA, Blei et al. 2003) model is expressed as a probability distribution

over a set of possible topics. It is based, unlike our previous models, on a generative

model for documents: a non-deterministic procedure by which observed documents

are supposed to have created. In the generative model each document is viewed as a

distribution over a fixed number of topics topics; each topic is itself a distribution over

observable words. The individual words in a document are generated by repeatedly

sampling first a topic according to the topic distribution of that document and then a

single word from that topic. Figure 2.1 shows a graphical representation of the LDA

model, in which each observed word (w) is produced by probabilistically sampling a

topic z from the document’s distribution of topics and an instantiated word w from the

z distribution.

Under this framework the problem of meaning representation is expressed as one

of statistical inference: given some observed data — words in a corpus, for instance

— the model must infer the latent structure from which it was generated. This in-

ference is often accomplished through some form of (e.g. Gibbs) sampling (Griffiths

and Steyvers 2004, Phan et al. 2008). Word meaning in LDA is thus represented as a

probability distribution over a set of latent topics. To make use of a probabilistic rep-

resentation in our framework we take the meaning of a word under LDA to be a vector

whose dimensions correspond to topics and whose values correspond to the probabil-

ity of the word given these topics; the likelihood of seeing a word summed over all

possible topics is always one. Example representations of words in LDA space appear

in Table 2.1 (d) (vector components are topic-word distributions).

2.2.5 Dependency Vectors

Analogously to LSA, the dependency vectors model constructs a co-occurrence matrix

in which each row represents a single word; unlike LSA, the columns of the matrix

correspond to other words in whose syntactic context the target word appears. These

dimensions may be either the context word alone (e.g. walks) or the context word

paired with the dependency relation in which it occurs (e.g. subj-of-walks). Many

variants of syntactically aware semantic space models have been proposed in the lit-

erature; from these we adopt the framework of Padó and Lapata (2007) where a se-
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mantic space is constructed over dependency paths, namely sequences of dependency

edges extracted from the dependency parse of a sentence. Three parameters specify the

semantic space: (a) the content selection function determines which paths contribute

towards the representation (e.g. paths of length 1), (b) the path value function assigns

weights to paths (e.g. it can be used to discount longer paths, or give more weight to

paths containing subjects and objects as opposed to determiners or modifiers.), and (c)

the basis mapping function creates the dimensions of the semantic space by mapping

paths that end in the same word to the same dimension. A sample dependency space

in shown in Table 2.1 (e) (vector components represent co-occurrence frequencies).

2.3 Representing Categories

The semantic representations described in the preceeding section serve as the input to

two categorisation models, representative of the exemplar-based and prototype-based

approaches. We derive both of our models from the Context Model (CM, Medin and

Schaffer 1978) – while more complex categorisation models could certainly be defined

the simplicity of the CM, along with the ease with which it is can be reduced to a simple

prototype model, make it ideal for the task of comparing concept representations. In

the context model categories are represented by a list of stored exemplars and inclusion

of an unknown item in a category is determined by the net similarity between the item

and each of the category’s exemplars. Specifically, we compute an additive similarity

function ηw, j in which the similarity of a novel item w to a category c is calculated by

summing its similarity to all stored items i belonging to c:

ηw,c = ∑
i∈c

ηw,i (2.1)

where ηw,i represents the similarity between w and a stored exemplar i belonging to

category c. In Medin and Schaffer’s original definition of the CM ηw,i is computed via

Manhattan (for discrete features) or Euclidean (for real-valued features) distance, with

vectors re-scaled according to category-specific weightings. We modify this somewhat

to account for the automatically-derived nature of our concept representations – with-

out supervised training examples it would be difficult to obtain feature weights for the

corpus-derived concept representations previously described. To calculate the similar-

ity ηw,i between a pair of concepts in our exemplar model we compute the cosine of

the angle between the unweighted vectors representing w and i:

ηw,i = cos(θ) =
vw · vi

||vw||.||vi||
(2.2)
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Following Vanpaemel and Storms (2008), we can modify Equation 2.1 into a pro-

totype model by replacing the list of stored exemplars with a single ‘prototypical’

instance c j:

ηw,c = ηw,c j (2.3)

The similarity between a concept and a category thus reduces to the cosine distance

between representations of the concept and the category’s prototype. There is some

disagreement over what constitutes an appropriate prototype, with candidates ranging

from the single most representative example (e.g. the most ’doglike’ dog that actually

exists) to an abstract, idealised representation (e.g. the most ’doglike’ dog that could

exist) or a weighted average over all examples (e.g. the average dog over all existing

dogs). As with the exemplar model, the lack of feature weightings resulting from the

automatically-derived nature of our concept representations rules out the possibility

of constructing a prototype as a weighted mean of exemplars; without weighting such

a prototype would be overly similar to our exemplar model, simply representing the

category as the centroid of its exemplars. Choosing any single exemplar as the proto-

type presents similar problems, as the prototype model is then essentially an exemplar

model with reduced information.

Instead, for the category prototype c j we use the representation of the category

label, e.g. the prototype for the category FRUIT is the semantic representation of the

word fruit. Substituting category names for prototypes follows naturally from Rosch’s

observation that prototypes can substitute for category names (Rosch 1977); similarly,

work in textual entailment (specifically, on the subtask of lexical entailment) suggests

that distributional representations of high-level concepts (e.g. category names) can

be used to make structured predictions about the representations of their hyponyms

(Geffet and Dagan 2005, Shnarch et al. 2011).

The similarity function ηw,c provides the mechanism by which a simple model of

categorisation, be it exemplar- or prototype-based, applies knowledge about existing

categories to (novel or previously-encountered) stimuli. We can contrast how typical

different stimuli are within a common category by comparing their relative similar-

ity to that category, generate likely exemplars by choosing instances with a likelihood

relative to their similarity to the category, or predict the category to which a novel

stimulus belongs based on its similarity to previously-encountered categories. For the

latter task, discussed in greater detail in Section 2.5.1, we implement ηn,c as a single-

best criterion rather than within a Luce choice rule (Luce 1959) for organising concepts

into categories. The Luce choice axiom (or Shephard-Luce choice rule) describes the
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probability of picking a single item i from a possible set c in terms of some absolute

weighting wi. Predicting the correct category for a stimulus w as a Luce choice selec-

tion entails picking a category c from the set of possible categories C with probability

P(c):

P(c) =
ηw,c

C

∑
k

ηw,k

(2.4)

While the Luce choice axiom has been widely used throughout behavioural re-

search (Logan 2003) and enjoys great empirical support (Luce 1977), it is of pri-

mary interest as a means of predicting human performance on selection- or attention-

allocation tasks, and thus somewhat orthogonal to our goal of contrasting semantic

representations. Implementing our prototype and exemplar models using a single-best

criterion (i.e. the model always predicts the most likely category for a concept in a

category naming tasks) unquestionably limits their cognitive plausibility; crucially, we

employ these models only as a means through which we can evaluate various semantic

representations for concepts.

2.4 Gold-Standard Category Data

In order to perform any kind of meaningful evaluation of our models we need to obtain

or construct a gold-standard dataset reflecting human performance on categorisation

tasks. Unfortunately, to the best of our knowledge no such dataset exists for English-

language concepts. Storms et al. (2000) extend the feature norming study of Ruts

et al. (2004) with manually-produced annotations for a number of categorisation tasks,

including category naming, typicality rating, and exemplar generation – but do so for

a limited set of only eight categories.

For our dataset we began with the concepts described in McRae et al.’s (2005)

feature norming study. Like Ruts et al. (2004), the McRae et al. norms consist of a list

of basic-level concepts annotated with descriptive features. For each concept several

participants were asked to produce a number of relevant features. The frequency with

which a feature was produced for a concept can be viewed as a form of weighting

indicating the feature’s importance or relevance for that concept; these frequencies can

be used to produce a high-quality spatial representation of the concept’s meaning. The

McRae et al. norms contain 541 basic-level concepts (e.g. dog and chair).
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In this HIT you are given a series of words and asked to label each one
with the category to which best belongs. For example, you might assign
”apple” the category ”fruit”, or decide that ”computer” is a member of the
category ”device.” Do not come up with a single category for entire group
– the words are not necessarily related to one another. If you can, try to
come up with category labels that are only a single word; for example,
don’t use “musical instrument” when “instrument” will do. I have filled in
a few examples; you should complete the rest.

Exemplar Category

EXAMPLE: pizza food

EXAMPLE: calculator device

accordion

balloon

clarinet

sailboat

lime

whale

umbrella

buffalo

dishwasher

goldfish

Figure 2.2: An example category naming task. For each exemplar, participants are

asked to generate an appropriate category label.

Unfortunately, the McRae et al. norms do not include any explicit relational infor-

mation. Because we are interested in using the norms in a model of categorisation it

was thus necessary for us to augment concepts with category labels (e.g. dog is a kind

of animal) and typicality ratings. We collected category labels and typicality ratings in

a pair of elicitation studies, both conducted using Amazon Mechanical Turk1, an online

labor marketplace which has been used in a wide variety of elicitation studies and has

been shown to be an inexpensive, fast, and (reasonably) reliable source of non-expert

annotation for simple tasks (Snow et al. 2008).

1http://www.mturk.com
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2.4.1 Collecting Category Names

To obtain category naming information for each of the 541 concepts in the McRae et al.

norms we conducted an elicitation study in which each participant was presented with

twenty unrelated, randomly selected concepts from McRae et al.’s (2005) data set and

asked to label each with the category to which it best belonged. Responses were in the

form of free text, i.e. participants were asked to key in a label rather than select one

from a list. Each concept was labeled by ten participants; concepts were then grouped

according to the resulting categories. Because annotations collected from Mechanical

Turk can be noisy we then discarded those categories containing fewer than five unique

concepts, leaving 41 categories for 541 exemplars. Figure 2.2 shows an example of the

category naming task as presented to participants; the resulting category labels are

listed in Table 2.2. The full listing of exemplars organised into their most commonly-

labelled category is included in Appendix A.

To fully integrate these labels into the norms (and to enable their use as prototypi-

cal representations) it was necessary to collect semantic features for each, in a fashion

similar to McRae et al. (2005). To do this, we replicated the norming study of McRae

et al. (2005), again using Mechanical Turk. Participants were presented with a single

concept (drawn from the set of category labels collected in our previous study) and

asked to generate ten relevant features. Instructions and examples were taken from

McRae et al. (2005); Figure 2.3 describes the task instructions as presented to partici-

pants. For each category label we collected features from 30 participants, resulting in

a large number of features per item. These features were then mapped into the features

already present in the norms; as in McRae et al. (2005) this mapping was performed

manually.

2.4.2 Collecting Typicality Ratings

While a mapping between category labels and exemplars is obviously essential to the

evaluation of any model of categorisation, typicality ratings have been shown to be

indicative of performance on a variety of categorisation tasks (Malt and Smith 1983,

Hampton 1993). More significantly, typicality ratings provide a useful proxy for sim-

ilarity between concepts and categories; in a prototype model highly typical concepts

are likely to share a number of features with the prototype. Similarly, in an exemplar

model highly typical concepts are likely to be similar to one or more known exemplars

of a category.
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This experiment is part of an investigation into how people read words
for meaning. To help us conduct this work, we need information on what
people know about different things in the world. On this task you are given
a concept followed by ten blank lines. Please fill in as many of these lines
as you can with properties of the concept to which the word refers (one
concept per line). Examples of different types of properties would be:
physical properties, such as internal and external parts, and how it looks,
sounds, smells, feels, or tastes; functional properties, such as what it is
used for; where, when and by whom it is used; things that the concept is
related to, such as the category that it belongs in; and other facts, such
as how it behaves, or where it comes from. Please note that even though
many of the words can be thought of as something other than a noun (e.g.
camp can refer to the place where your tent is pitched, or the action of
camping), all words on the following pages are meant to be considered as
nouns only (e.g. camp, the place). Below, we have provided 3 examples
to give you an idea of what might be considered a property description of
a concept.

duck cucumber stove

is a bird is a vegetable is an appliance

is an animal has green skin produces heat

waddles has a white inside has elements

flies has seeds inside has an oven

migrates is cylindrical made of metal

lays eggs is long is hot

quacks grows in gardens is electrical

swims grows on vines runs on wood

has wings is edible runs on gas

has a beak is crunchy found in kitchens

has webbed feet used for making pickles used for baking

has feathers eaten in salads used for cooking food

lives in ponds

lives in water

hunted by people

is edible

You may be able to think of more and/or different types of properties for
these concepts, but these examples should give you an idea of what is
requested. Thank you for completing this HIT!

Figure 2.3: Instructions accompaning a feature norming task as presented to partici-

pants. These were taken from the feature norming study conducted by McRae et al.

(2005); presentation of the instructions was followed by a single concept (e.g. apple or

dog) and a list of ten free-form text entry fields.
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In this HIT you are given a set of words belonging to a single category
and asked to rank how ‘typical’ each is of the category on a scale of 1 to
7. For example, if the category was “Car” you might assign the following
typicality ratings to the words “Ford”, “Saturn”, and “Maserati”:

EXAMPLE:
Car Rating

1 2 3 4 5 6 7

Saturn x

Ford x

Maserati x

YOUR TASK:
Instrument Rating

1 2 3 4 5 6 7

accordion

flute

drum

guitar

harpsichord

kazoo

Figure 2.4: An example typicality rating task. For each exemplar in the given category

participants are asked to rate how ‘typical’ that exemplar is among other members of

the category.
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INSTRUMENT keyboard FURNITURE chair HOUSING apartment

REPTILE rattlesnake CONTAINER bin VEHICLE bike

CLOTHING jeans STRUCTURE building VEGETABLE carrot

HARDWARE drill APPLIANCE stove BIRD seagull

HOUSE cottage PLANT vine TOOLS hammer

EQUIPMENT football UTENSIL ladle THING doll

TOY surfboard KITCHEN dish RODENT rat

BUG beetle HOME house FRUIT grapefruit

MAMMAL horse OBJECT door ACCESSORIES necklace

STORAGE cabinet BUILDING apartment ANIMAL cat

DEVICE stereo TRANSPORTATION van FOOD bread

GARMENT coat FISH trout ENCLOSURE fence

INSECT grasshopper SPORTS helmet COOKWARE pan

WEAPON bazooka

Table 2.2: Category labels and their most typical exemplar produced by participants in

category naming and typicality rating study.

In order to apply our models to the task of predicting typicality ratings it was nec-

essary to conduct an additional elicitation study to obtain gold-standard ratings for

our previously-obtained categories. This study was again conducted using Mechani-

cal Turk, and followed a roughly similar setup to the category label elicitation study

described in the previous section. Participants were presented with a single category

(e.g. FRUIT) along with twenty randomly selected exemplars identified by the previ-

ous study as belonging to the category (e.g. cherry, apple, and tomato) and asked to

rate the typicality of each listed exemplar among other members of the category. Typi-

cality ratings for each exemplar-category pair were collected from 20 participants and

an overall rating for each exemplar was computed by taking their mean. An example

of the task as presented to participants is shown in Figure 2.4; Table 2.2 lists the cate-

gories obtained in the previous experiment along with the exemplar rated most typical

for each.

2.4.3 Evaluating Reliability

We assessed the quality of the category labels and typicality ratings obtained from Me-

chanical Turk by calculating their reliability: the likelihood of a similarly-composed

group of participants presented with the same task under the same circumstances pro-
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BUILDING 0.61 HARDWARE 0.18 BIRD 0.65

CLOTHING 0.79 ACCESSORIES 0.47 REPTILE 0.91

FOOD 0.69 TOY 0.27 KITCHEN 0.44

COOKWARE 0.83 WEAPON 0.09 PLANT 0.06

HOUSING 0.71 MAMMAL 0.39 DEVICE 0.54

APPLIANCE 0.66 VEGETABLE 0.75 INSTRUMENT 0.37

EQUIPMENT 0.21 THING 0.50 FURNITURE 0.90

HOME 0.74 STRUCTURE 0.54 TOOLS 0.71

UTENSIL 0.25 BUG 0.39 ANIMAL 0.65

GARMENT 0.53 RODENT 0.84 SPORTS 0.19

INSECT 0.01 CLOTHES 0.48 FISH 0.67

CONTAINER 0.47 TRANSPORTATION 0.56 VEHICLE 0.42

ENCLOSURE 0.70 STORAGE 0.20 HOUSE 0.56

OBJECT 0.43 FRUIT 0.56

Table 2.3: Per-category reliability of human participants on a typicality rating task. Reli-

ability was computed as the split-half overlap and adjusted using the Spearman-Brown

prediction forumula.

ducing identical results. We split the collected typicality ratings randomly into two

halves and computed the Spearman’s ρ correlation between the two; this correlation

was averaged across three random splits. These correlations were adjusted by applying

the Spearman-Brown prediction formula (Storms et al. 2000, Voorspoels et al. 2008)

to compensate for the halving of the test size implicit in computing the split-half cor-

relation. The reliability of the typicality ratings averaged over 41 concepts was 0.51

with a standard deviation of 0.23. The minimum reliability was 0.01 (INSECT); the

maximum was 0.91 (REPTILE). Reliability on the category naming task was computed

similarly, with an average of 0.67 (standard deviation of 0.15), a maximum of 0.88

(INSTRUMENT), and a minimum of 0.34 (OBJECT).

These reliability figures may seem low compared with Storms et al. (2000) who

perform a similar study. However, we note that they conduct a smaller scale exper-

iment; they include only eight common natural language categories (whereas we in-

clude 41), and elicit typicality ratings for only 12 exemplars per category (whereas we

average ∼30 exemplars per category).

Generally speaking, reliability tended to be higher for more specific or familiar

categories. On the category naming task (Table 2.4) participants exhibited the highest
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BUILDING 0.64 HARDWARE 0.39 BIRD 0.88

CLOTHING 0.80 ACCESSORIES 0.60 REPTILE 0.79

FOOD 0.82 TOY 0.73 KITCHEN 0.55

COOKWARE 0.53 WEAPON 0.76 PLANT 0.58

HOUSING 0.51 MAMMAL 0.83 DEVICE 0.56

APPLIANCE 0.60 VEGETABLE 0.81 INSTRUMENT 0.88

EQUIPMENT 0.60 THING 0.50 FURNITURE 0.78

HOME 0.43 STRUCTURE 0.51 TOOLS 0.52

UTENSIL 0.59 BUG 0.78 ANIMAL 0.82

GARMENT 0.80 RODENT 0.83 SPORTS 0.59

INSECT 0.80 CLOTHES 0.82 FISH 0.80

CONTAINER 0.54 TRANSPORTATION 0.75 VEHICLE 0.74

ENCLOSURE 0.55 STORAGE 0.65 HOUSE 0.59

OBJECT 0.34 FRUIT 0.87

Table 2.4: Per-category reliability of human participants on a category naming task. Re-

liability was computed using a split-half correlation and adjusted using the Spearman-

Brown prediction formula.

agreement for categories with common, familiar exemplars, e.g. BIRD, (Musical) IN-

STRUMENT, and FRUIT. Conversely, participants tended to disagree more when asked

to name the category for concepts drawn from more generic or loosely-defined cate-

gories, e.g. OBJECT or HARDWARE. Category-specific differences on the typicality

rating task (Table 2.3) are more difficult to explain; Sloman and Rips (1998) suggest

that cultural and linguistic differences between participants as an explanation for sim-

ilar discrepancies in their experiments, but the online nature of our study prevented us

from undertaking any additional investigation of these differences.

2.5 Experiment 1: A Task-Based Comparison of Exem-

plar and Prototype Models

Having collected a set of gold-standard data against which we can assess a model of

categorisation we now turn to the task of evaluating our exemplar and prototype models

using each of the concept representations described in Section 2.2. Both models were

evaluated on three categorisation tasks from Storms et al. (2000): category naming,

typicality rating, and exemplar generation.
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2.5.1 Categorisation Tasks

In category naming the model is presented with a previously unencountered word and

must predict the most appropriate category to which it belongs, e.g. the exemplar apple

would be most correctly identified as a member of the category FRUIT, or (with lesser

likelihood) FOOD or TREE. In the exemplar model, we measure the similarity ηw,c of

the novel word against all previously encountered exemplars and select the category

with the highest net similarity between its exemplars and the word in question; for the

prototype model this is the category with the highest similarity between the word and

the category’s label. Performance on the category naming task was determined in a

leave-one-out fashion: a single exemplar was removed from the training examples and

then categorised. This was repeated for each exemplar in the training set. The latter

consisted of 41 subject-produced category labels each with an average of 30 exemplars.

In a typicality rating task the model is presented with both an exemplar and label

of the category to which it belongs, and must predict the degree to which it is common

amongst members of that category. For the category FOOD, for example, pizza or bread

would be considered highly typical exemplars, while lutefisk or black pudding would

likely be considered much more atypical. The predicted typicality rating for a word

and a category is simply the similarity between the two. In the exemplar model this

is the sum similarity between the word and each of the category’s exemplars; in the

prototype model this is the similarity between the category’s label and the word. The

exemplar model was again evaluated in a leave-one-out fashion, with the predicted

typicality rating between an exemplar and its gold standard category computed as the

similarity between the exemplar and all other gold-standard members of that category,

excepting it. Performance on the typicality rating task was evaluated by computing

the correlation between the models’ predicted typicality ratings and the average value

predicted by the participants of our rating study. The dataset included typicality ratings

for 1,228 exemplar-category pairs.

In an exemplar generation task the model is given a category label and must gen-

erate exemplars typical of the category, e.g. for FOOD we might generate pizza, bread,

chicken, etc. Given a category the model selects from the exemplars known to be-

long those that are most typical; typicality is again approximated by word-category

similarities as determined by the model-specific ηw,c. As before, the exemplar model

was evaluated in a leave-one-out fashion. We evaluate performance on the exemplar

generation task by computing the average overlap (across categories) between the ex-
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Figure 2.5: Performance of exemplar model using feature norms and data-driven mean-

ing representations.
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(c) Exemplar Generation

Figure 2.6: Performance of prototype model using feature norms and data-driven mean-

ing representations.

emplars generated by the model and those ranked as most typical of the category by

our participants.

2.5.2 Results

Figure 2.5 summarizes our results with the exemplar model and five meaning rep-

resentations: McRae et al.’s (2005) feature norms (Norms), PMI-transformed word

co-occurrence (PMI), Latent Semantic Analysis (LSA), Latent Dirichlet Allocation

(LDA), and Dependency Vectors (DV). Results are shown for category naming (Fig-

ure 2.5a) typicality rating (Figure 2.5b) and exemplar generation (Figure 2.5c). We

examined performance differences between models using a χ2 test (category naming

and exemplar generation) and Fisher’s r-to-z transformation (to compare correlation

coefficients for the typicality rating task).

On category naming the exemplar model performs significantly better with the

feature norms than when using DV, LDA, or LSA representations (p < 0.01); how-

ever, LSA performs significantly better (p < 0.05) than DV or LDA and PMI simi-

larly outperforms both feature norms (p < 0.05) and all other corpus representations

(p < 0.01). On typicality rating there is no significant difference between the feature
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norms, PMI, or LSA. All three are significantly better (p < 0.01) than either DV or

LDA. Additionally, LDA performs significantly better than DV (p < 0.05). On the ex-

emplar generation task the feature norms are significantly better (p < 0.01) than any of

the corpus-based representations; similarly, both PMI and LSA perform significantly

better than LDA or DV (p < 0.01) while the difference between LSA and PMI is not

significant. LDA again slightly outperforms the dependency space (p < 0.05).

Our results with the prototype model are shown in Figure 2.6 and broadly follow a

similar pattern. On category naming the feature norms outperform DV, LDA, and LSA

(p < 0.01); PMI similarly outperforms both the norms and the three other corpus-

derived representations (p < 0.01). LDA is significantly better than LSA which in

turn is better than DV (p < 0.05). On typicality rating there is no significant differ-

ence between the feature norms and LSA; the difference between LSA and the other

three corpus representations is significant (p < 0.01). On the exemplar generation task

feature norms significantly outperform all other representations (p < 0.01); PMI is sig-

nificantly better than LSA (p < 0.01), and LSA is significantly better (p < 0.01) than

LDA or DV.

2.6 Discussion

In this chapter we have quantitatively evaluated feature norms and alternative corpus-

based meaning representations on three natural language categorisation tasks. Perhaps

unsurprisingly our results indicate that feature norms are more accurate representations

when compared to corpus-based models. As feature norms rely on explicit human

judgment, they are able to capture the dimensions of meaning that are psychologically

salient; By contrast, corpus-based models learn in an unsupervised fashion and require

no human involvement or external knowledge databases such as dictionaries, thesauri

or other knowledge repositories.

Overall we find the simple PMI-transformed co-occurrence space to be a reason-

able approximation of feature norms, superior to LDA, LSA, and the syntactically

more aware dependency vectors. This result is consistent across models (exemplar vs.

prototype) and tasks. Importantly, the PMI model (like, indeed, our other corpus-based

representations) is language-independent and capable of extracting representations for

an arbitrary number of words. By contrast, feature norms tend to cover a few hundred

words and involve several subjects over months or years. Albeit in most cases bet-

ter than our models, feature norms themselves yield relatively low performance on all
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three tasks we attempted using either an exemplar or prototype model (see Figures 2.5

and 2.6). We believe the reasons for this are twofold. Firstly, McRae et al.’s 2005

norms were not created with categorisation in mind, and we may obtain better predic-

tions with some form of feature weighting (see Storms et al. 2000). Secondly, the tasks

seem hard even for humans (as corroborated by our reliability ratings).

The differences in performance between PMI, LSA, LDA, and DV can be explained

by differences between the notion of similarity implicit in each. Although LDA and

LSA are related – meaning representation in both models is derived from a word-

document co-occurrence matrix and the inferred topics in LDA can be viewed as a form

of dimensionality reduction – they have distinct notions of similarity. Closely related

words in LDA appear in the same topics, which are often corpus-specific and difficult

to interpret; words belonging to different categories may be deemed similar yet be

semantically unrelated. Conversely, our LSA and PMI spaces share the same notion of

similarity, but differ in the construction of their respective co-occurrence matrices. The

poor performance of the DV model is somewhat disappointing. Our experiments used a

large number of dependency relations; it is possible that a more focused semantic space

with a few target relations such as coordination and predicate structures (e.g. Apples

and pears are fruits) may be more appropriate. For these reasons, we rely primarily

on concept representations based on the PMI-transformed co-occurrence space for the

remainder of the thesis.

Our simulation studies in Experiment 1 suggest that an exemplar model is a better

predictor of categorisation performance than a prototype one. This result is in agree-

ment with previous studies (Voorspoels et al. 2008, Storms et al. 2000) showing that

exemplar models perform consistently better across a broad range of natural language

concepts from different semantic domains. This finding is also in line with studies

involving artificial stimuli (e.g. Nosofsky 1992).



Chapter 3

Incremental Models of Category

Acquisition

In this chapter we concentrate on the task of acquiring natural language semantic cat-

egories and examine how the statistics of the linguistic environment as approximated

by large corpora influence category learning. Categories are learnt not only from ex-

posure to the linguistic environment but also from our interaction with the physical

world. Perhaps unsurprisingly, words that refer to concrete entities and actions are

among the first words being learnt as these are directly observable in the environment

(Bornstein et al. 2004). Experimental evidence also shows that children respond to

categories on the basis of visual features, e.g. they often generalize object names to

new objects on the basis of similarity in shape and texture (Landau et al. 1998, Jones

et al. 1991). Nevertheless, we focus on the acquisition of semantic categories from

large text corpora based on the hypothesis that simple co-occurrence statistics can be

used to capture word meaning quantitatively. The corpus-based approach is attractive

for modeling the development of linguistic categories. If simple distributional infor-

mation really does form the basis of a word’s cognitive representation (Harris 1954,

Redington and Chater 1997, Braine 1987), this implies that learners are sensitive to

the structure of the linguistic environment during language development. As experi-

ence with a word accumulates, more information about its contexts of use becomes

encoded, with a corresponding increase in the ability of the language learner to use the

word appropriately and make inferences about novel words of the same category.

Where our efforts in the previous chapter focused on using text corpora to induce

meaning representations for concepts and on using those representations to organise

concepts into categories, we now switch to the task of modelling category acquisi-

35
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tion. We first describe two properties necessary for a cognitively plausible model of

category acquisition, and then develop a pair of models based on differing statistical

approaches that satisfy these constraints. We apply these models to a large corpus,

both to the original text and to a version enriched with automatically-produced depen-

dency information, as well as to a corpus of child-directed speech. Following this, we

assess the performance of both models on a novel categorisation task which highlights

their cognitively plausible nature. For the corpus-based experiments we assess perfor-

mance against a gold-standard set of categories and exemplars; for the cognitive task

we compare against categories produced by participants in a human-directed variant of

the task.

3.1 Related Work

The task of categorisation, in which people cluster stimuli into categories and then use

those categories to make inferences about novel stimuli, has long been a core problem

within cognitive science. Understanding the mechanisms involved in categorisation,

particularly in category acquisition, is essential, as the ability to generalize from ex-

perience underlies a variety of common mental tasks, including perception, learning,

and the use of language. As a result, category learning has been one of the most ex-

tensively studied aspects in human cognition, with computational models that range

from strict prototypes (categories are represented by a single idealized member which

embodies their core properties; e.g. Reed 1972) to full exemplar models (categories

are represented by a list of previously encountered members; e.g. Nosofsky 1988) or

combinations of the two (e.g. Griffiths et al. 2007a). While the differences between

these approaches can have a profound effect on the quality and nature of induced cat-

egories, based on our previous exploration of exemplar- and prototype-based models

(see Chapter 2 for details), we focus here on a purely exemplar-based approach.

Historically, the stimuli involved in such studies tend to be either concrete objects

with an unbounded number of features (e.g. physical objects; Bornstein and Mash

2010) or highly abstract, with a small number of manually specified features (e.g, bi-

nary strings, colored shapes; Medin and Schaffer 1978, Kruschke 1993). Most existing

models focus on adult categorisation, in which it is assumed that a large number of cat-

egories have already been learnt. A notable exception is Anderson’s (1991a) rational

model of categorisation (see also Griffiths et al. 2007a) where it is assumed that the

learner starts without any predefined categories and stimuli are clustered into groups
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as they are encountered. When a new stimulus is observed, it can either be assigned to

one of the pre-existing clusters, or to a new cluster of its own.

This process of learning semantic categories is necessarily incremental. Human

language acquisition is bounded by memory and processing limitations, and it is im-

plausible that children process large amounts of linguistic input at once and induce

an optimal set of categories. An incremental model learns as it is applied, meaning

it does not require separate training and testing phases. Behavioral evidence (Born-

stein and Mash 2010), as well as existing models of category acquisition in the context

of child-directed speech (Baroni et al. 2007), suggest that this scenario more closely

mirrors the process by which infants acquire categories. Having this in mind, we for-

mulate two incremental categorisation models, each differing in the way they represent

categories. Both models follow the exemplar tradition — categories are denoted by a

list of stored exemplars and inclusion of an unknown item in a category is determined

by some notion of similarity between the item and the category exemplars. Previous

work (Voorspoels et al. 2008, Storms et al. 2000), as well our own exploration (see

Chapter 2) indicates that exemplar models perform consistently better across a broad

range of natural language categorisation tasks. This finding is also in line with studies

involving artificial stimuli (e.g. Nosofsky 1988). While these studies focus on natural

language categories they tend not to specifically address the task of language acquisi-

tion; Storms et al. (2000) compare various categorisation models in a natural language

context and Voorspoels et al. (2008) use an exempar model to predict typicality ratings

for natural language concepts.

In addition to its interest from a cognitive point of view — it cannot be taken for

granted that the nature of categorisation performed using artificial categories parallels

that involving natural natural language concepts — categorisation of natural language

stimuli is fundamental to solving numerous existing problems in natural language pro-

cessing. Many of these problems can be essentially re-cast as a categorisation task.

Word sense discrimination1 is a good example, a model for clustering words into cat-

egories could in many cases double as a word sense discriminator. Other tasks such as

the modelling of selectional restrictions (Resnik 1997, Bergsma et al. 2008, Gormley

et al. 2011) might benefit from the ability to generalise over categories in a way that

does not rely upon expensive, human-produced hierarchies of word relations. Finally,

1Word Sense Disambiguation is the task of determining which sense of a word is meant in a particular
instance, for words with multiple or ambiguous meaning. It is one of the oldest problems in natural
language processing (Weaver 1949), and fundamental to solving a large number of higher-level tasks,
e.g. anaphora resolution or discourse analysis.
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we hope that the incremental algorithms developed here could be used for large scale

data analysis. Standard batch clustering algorithms can quickly become impractical

for very large datasets. However, for the algorithms we present here clusters can be

updated as data comes along without an expensive re-estimation of the model’s param-

eters.

3.2 Models of Category Acquisition

We present two models of category acquisition, one based on a graph-based represen-

tation and another following a probabilistic approach.

Our first model is reminiscent of semantic networks (Collins and Loftus 1975).

In this framework, concepts are represented as nodes in a graph and edges represent

relationships between such concepts. Although semantic networks are traditionally

hand coded by modelers, we learn them from naturally occurring data. In our model,

nodes in the graph correspond to words and weighted edges indicate distributional

similarity rather than semantic or syntactic relationships. Categories arise naturally in

such a representation as densely connected regions or subgraphs. While most research

on semantic networks focuses on their use within a larger model of spreading activation

(Anderson 1983), they have also been used to gain insight into performance deficits in

patients with psychological impairments (Tyler et al. 2000) and to draw comparisons

between internet search and memory access (Griffiths et al. 2007b).

Our second model follows a probabilistic approach where categories correspond to

topics in a generative model. Topic models have been successful at modeling a wide

range of cognitive phenomenal including lexical priming, word association, synonym

selection, and reading times (see Griffiths et al. 2007c). In contrast to our use of topic

models in the preceeding chapter, in which topic distributions were used as input to a

vector-space model of semantics, here we use the topic in which a word is most likely

to occur as a proxy for its category. Topics themselves are modeled as probability dis-

tributions over words, and can be thought of as a “soft” list of exemplars belonging

to the corresponding category. In order to obtain a hard clustering of words into cat-

egories we need only compute the topic in which each word is most likely to appear,

and assign it to the corresponding category. This model is comparable to our first, se-

mantic network-based model, in that it provides an unsupervised process for inducing

categories based on a notion of semantic relatedness; unlike the preceeding model, it

performs that process using a purely probabilistic, rather than graph-based, approach.
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Algorithm 1: Batch Chinese Whispers

initialize;1

for nodei ∈ Nodes do2

class (node) = i;3

end4

while changes do5

for node ∈ Nodes (in random order) do6

class (target) = class (nearest neighbor)7

end8

end9

Furthermore, both models can be easily adapted to work within cognitive constraints.

Any model of human category acquisition should demonstrate two important fea-

tures: (1) the input should be processed as it arrives, i.e. the set of clusters is incre-

mentally updated and (2) the set of clusters should not be fixed in advance, but rather

determined by the characteristics of the input data. Models obeying the first constraint

are henceforth referred to as incremental; models obeying the second constraint are

said to be non-parametric. Note that we use this term to imply only that a model is

non-parametric with respect to the number of categories to induce; in our discussions a

non-parametric model may take other parameters (e.g. smoothing values or a desired

number of sampling iterations) but may not require that the number of final categories

be specified a priori. In the following sections we present a pair of incremental, non-

parametric models of category acquisition which employ very different approaches to

the task: one is probabilistic, generative model based around the idea of topic models,

while the other pairs an algorithm for identifying structure in graphs with the idea of

encoding concepts into a semantic network.

3.2.1 Chinese Whispers

The term semantic network has been used in many fields to describe a variety of con-

cepts. In Artificial Intelligence and its subfields a semantic network is generally taken

to be a directed graph in which nodes represent grounded or un-grounded concepts

and edges indicate a directed relationship from one concept to another (Arbib 2002,

Cravo and Martins 1993). Following Clauset et al. (2007), we consider a simpler for-

mulation of semantic networks in which a network is composed a graph with edges
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(a) (b) (c)

Figure 3.1: An example application of the Chinese Whispers algorithm. The algorithm

is initialised by assigning each node in the input graph a novel class (a). On iteration

each node in the graph takes on the class of its nearest neighbor (b); after a number of

iterations the class assignments stabilise , with the remaining classes corresponding to

identifiable subgraphs within the original network (c).

between word nodes. Such a graph is unipartite: there is only one type of node, and

those nodes can be interconnected freely. While traditional research using semantic

networks has focused on performing inference using fully-formed networks to model

the organisation of semantic memory, we are argue that they are also well suited to

modeling acquisition, as updating the graph to reflect newly acquired information is a

straightforward procedure. Here, we propose what is to our knowledge the first graph-

based model of category acquisition, in which categories are extracted from a graph

representation by identifying well-structured subgraphs within the network.

The task of extracting such subgraphs is generally viewed as a graph clustering

problem; Chinese Whispers (CW, Biemann 2006) is one such randomized graph-

clustering algorithm that takes as input a graph with weighted edges and produces

a hard clustering2 over the nodes in the graph. It has several desirable properties, in-

cluding a tendency to converge rapidly and the ability to infer the number of output

clusters. The CW algorithm consists of two steps: initialization and iteration. In the

initialization step, each node in the graph is assigned a unique class. In the iterative

step, each node in the graph (in random order) adopts the highest ranked class in its

neighborhood (i.e. the set of nodes with which it shares an edge). Algorithm 1 shows

this procedure in pseudocode. CW is in general not guaranteed to converge; in partic-

ular, a node with two equally distant nearest neighbors may flip between the classes of

2Hard clustering is the task of organising a set of items into N discrete clusters in which each item
appears in exactly one cluster. In contrast, a items organised into a soft clustering may belong to one or
more clusters to a varying degree.
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Algorithm 2: Incremental Chinese Whispers

for document ∈ Documents do1

for target,context ∈ document do2

if target ∈ graph then3

update target representation given context;4

class (target) = class (nearest neighbour (target));5

else6

add target to graph;7

class (target) = |graph|;8

end9

end10

end11

those neighbors indefinitely. In practice it tends to reach ‘almost-convergence’ quite

rapidly (Biemann 2006), which we argue makes it a good fit for modelling the ease

and rapidity with which the mind adjusts category structure when presented with new

information.

Vanilla CW requires that the entire graph be known before it can be applied, and

thus makes no provision for graphs which change over time, as would be expected in

an acquisition task. Modifying the CW for use in an incremental setting is straight-

forward: we need only to update the edges of the graph with newly-encountered input

before each iteration step and to run the algorithm until we run out of input to process

rather than until convergence (see Algorithm 2).

While applying the incremental CW algorithm to the task of acquiring semantic

categories from text, we maintain a weighted, undirected graph in which each node

represents a target word and edges between nodes are weighted according to the sim-

ilarity between words. To compute this similarity, the implementation maintains a

running co-occurrence matrix in which each row corresponds to a target word and

each column to a possible context word. Similarity between words is computed as

the cosine distance between the corresponding rows. Matrix cells are transformed into

(positive) pointwise mutual information values (Bullinaria and Levy 2007). Our ex-

periments used a context window centered around a target word (see Chapter 2 for

details), however non-symmetric contexts are also possible; target representations are

updated according to the context words appearing in the window.
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(a) (b) (c) (d)

Figure 3.2: An example application of the Incremental Chinese Whispers algorithm.

We initialise the algorithm with an empty graph; for the first encountered word (a) we

create a new node, assign it the first class, and add it to the graph. For each following

encounter of a novel word (b, c) we create a node with a novel class and add it to the

graph along with a weighted edges connecting it to any similar nodes. Upon encounter-

ing a previously seen word (d) we update its representation, re-compute its edges, and

assign it the class of its nearest neighbour.

3.2.2 Topic Model

A great deal of work in recent years has focused on the idea of topic models, in which

the meaning of a particular document or word is encapsulated by the latent topics it

contains or from which it is generated. Conceptually such models seem appropriate for

categorisation tasks, as the notions of “topic” and “category” have much in common.

One particular topic model which has seen wide success is Latent Dirichlet Allo-

cation (LDA, Blei et al. 2003, Griffiths et al. 2007c), which provides a probabilistic

model of document generation. In LDA, a document is modeled as a probability dis-

tribution over a set of latent topics; similarly, a topic is modeled as a distribution over

words. The actual words composing a document are supposed to have been generated

by a process of repeatedly sampling first a topic from the document distribution, then a

single word from the selected topic. LDA (and generally topic models) can be viewed

as a form of a bipartite graph consisting of two types of nodes, i.e. words and topics

and connections between them.

One drawback to LDA is that it requires the number of topics to be known in ad-

vance. As this assumption clearly does not hold in the case of category acquisition,

we developed a nonparametric, incremental topic model which is conceptually similar

to LDA. This model maintains the generative assumptions of LDA, and much of the

same graphical structure; it differs in the addition of a coupling probability (Anderson
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Figure 3.3: A nonparametric topic model which infers the number of topics during train-

ing. As in standard LDA, the α and β parameters govern the per-document topic and

per-topic word distributions, respectively; this model differs from LDA in the addition of

a new parameter γ, which indicates the amount of probability mass reserved for unseen

categories (analogous to Anderson’s (1990) coupling probability.

1990) used to infer the number of categories during training. Additionally, it performs

no final re-estimation of probabilities (as in standard LDA, where re-estimation is per-

formed using Gibbs sampling) in order to maintain incrementality.

In terms of graphical structure our topic model differs from standard LDA (Figure

2.1) by the addition of a third parameter, γ, on the topic distribution. The γ parameter

indicates the proportion of probability mass to reserve for a new, previously unseen

topic; as additional topics are created the probability of assigning a word to a new

topic decreases in relation to γ. α and β act as invisible counts for each topic in a

document and each word in a topic, respectively. Combining these parameters with
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the graphical model in Figure 3.3 yields the following probabilistic model:
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where w,z and d represent a word, topic (category), or document, respectively. z′

represents a previously unseen topic; a word w assigned to z′ is instead assigned to a

newly created category initialized to a uniform distribution. The notation ηz
w signifies

the number of times word w has appeared in topic z, while ηd
z similarly indicates the

count of occurrences of z within document d.

To maintain incrementality, the model performs no re-estimation of probabilities;

instead, as each item w of input is encountered it is assigned to a sampled topic z.

The relevant document and topic distributions are then updated in accordance with

the sampled topic. While these individual predictions are not revised (as in LDA) by

subsequent resamplings, predicted topics for subsequent encounters of w change based

on the distribution of words and topics; the equations for P(w|z) and P(z|d) are thus

analogous to those used during Gibbs sampling in LDA. With additional documents

these distributions converge to (hopefully) meaningful topics.

3.3 Evaluating Inferred Categories

In the following section we present three experiments assessing the performance of

the CW- and topic-based categorisation models on a category acquisition task. In the

first experiment we apply both models to a semantic network induced from a large
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corpus; in the second we repeat this procedure using a corpus of child-directed speech,

with the goal of exploring category acquisition in children. Both of these experiments

are conducted in a single batch fashion, entirely ignoring incrementality. We followed

these with an experiment to evaluate the models in an incremental context, in which

human participants in an elicitation study were asked to produce a series of categori-

sations in an incremental fashion. We then compare the categorisations induced by

both models on this same task to those produced by participants, evaluating how well

each model predicts participants’ incremental categorisations at each stage of the task.

This division between experiments evaluating batch and incremental performance was

designed to allow us to disentangle the two key aspects of the models and to assess

the methods of exemplar and category representation without introducing additional

complexity through an incremental evaluation.

3.3.1 Experiment 2: Category Acquisition From Corpora

Our first goal was to compare our two categorisation models and establish their perfor-

mance on a large corpus, in order enable a comparison between their differing methods

of exemplar and category representation. To do this, we trained both on the British Na-

tional Corpus (BNC) and compared each model’s resulting clustering against a human-

produced gold standard. In the following sections we describe how this gold standard

was created, discuss how the model parameters were estimated, and explain how the

model output was evaluated.

3.3.1.1 Method

As mentioned both models were trained on a version of the BNC which was pre-

processed so as to remove stopwords and highly infrequent words, with target words

corresponding to frequently-used nouns. The topic model was trained directly on the

documents contained in the corpus. It has three free parameters: α (the prior obser-

vation count for the number of times a topic is sampled in a document), β (the prior

observation count on the number of times words are sampled from a topic), and γ (the

probability mass reserved for new topics). For α and β we chose values in accordance

with the literature on LDA (Teh et al. 2006); these parameters were set to 1.2 and 0.1,

respectively. The γ parameter was tuned on a development corpus (10% of the BNC),

with the final value of 0.10. Because of this tuning procedure, all scores reported are

from application on the remaining 90% of the BNC not used for development.
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Note that the output of the topic model is a set of probability distributions rather

than a hard clustering over words. We can nevertheless coerce the model to produce

such a clustering by assigning each word to the category (topic) which maximizes its

likelihood:

category(w) = argmax
z

P(z|w) (3.1)

The incremental CW model was trained on noun-centered context windows of ±5,

which were extracted from the BNC. As the output of CW is a hard clustering over

nodes in the graph, no additional post-processing was required. One obvious question

that arises in the context of this experiment is whether using a richer contextual repre-

sentation yields more accurate categories; we examined this hypothesis by applying the

incremental CW algorithm3 to a dependency-parsed version of the BNC.4 Specifically,

we obtained dependency information from the output of MINIPAR, a broad coverage

parser (Lin 2001). To minimize noise this output was restricted to a small set of lexical-

ized dependency relations: subject, object, and conjunction. The vector space used to

compute similarity between words was constructed using context windows, with each

word represented as a vector of co-occurrence counts transformed using Pointwise

Mutual Information. We deemed this an appropriate space based on the experiments

described in Chapter 2, as it was infeasible to apply a more complex representation

(e.g. Latent Semantic Analysis) at each step of the incremental algorithm. When ap-

plied to the raw BNC dimensions in this space corresponded to possible context words;

when applied to the BNC with dependency information dimensions corresponded to

lexicalised dependency relations (e.g. OBJ-EAT).

Both models were evaluated based on their clustering of words into semantic cat-

egories and their output was compared against similar clusters elicited from human

participants. For this evaluation we used the gold-standard category-exemplar map-

ping produced in Chapter 2; the full list of category names and exemplars is included

in Appendix A. This data augments McRae et al.’s (2005) semantic feature norms with

category information, and consists of 541 basic-level concepts (e.g. DOG and CHAIR)

3Incorporating syntactic information into an incremental topic model is less straightforward, al-
though extensions of the basic LDA model have been proposed that take syntax into account (e.g. Boyd-
Graber and Blei 2008).

4The use of complete syntactic information such as that obtained through a dependency parse is
obviously nonsensical in the context of child category acquisition, as children acquire syntax and se-
mantics simultaneously (Pinker 1994). We argue, however, that it is appropriate for category acquisition
in adults, who do have access to complex syntactic information and are patently capable of learning new
categories based on that information.
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REPTILE

salamander, iguana, frog, alligator, rattlesnake, tortoise, crocodile, turtle, toad

FURNITURE

chair, stool, rocker, sofa, cabinet, desk, bookcase, mirror, shelves, bed, drapes,

clock, table, bathtub, bureau, cupboard, dresser, fence, cushion, bench, bayo-

net, armour

FRUIT

peach, yam, nectarine, banana, cantaloupe, apple, plum, raspberry, pear,

grape, blueberry, raisin, pineapple, prune, rhubarb, strawberry, lemon, hon-

eydew, orange, tomato, lime, cherry, coconut, olive, grapefruit, tangerine, av-

ocado, pumpkin, cranberry, mandarin

Table 3.1: Example gold standard categories with their exemplars from Fountain and

Lapata (2010). The full list of category labels and exemplars is included in Appendix A.

with features collected in multiple studies over several years. The category naming

study described in Chapter 2 obtained category labels for 517 of these concepts; in

it, participants were presented with a number of nouns chosen at random from the

McRae et al. norms and asked to name the category to which each noun belonged.

Participant responses were freeform strings, i.e. participants were not provided with

a list of possible categories. After adjusting for differences in spelling and conflating

synonyms, these responses were used to determine the most “correct” category label

for each noun.

Because the norms were originally drawn from a limited number of concepts many

of the nouns were labeled with the same category label; we exploited this overlap in

order to construct a clustering over the McRae et al. norms in which each cluster cor-

responds to a subset of nouns assigned the same category label in Chapter 2. Overall,

we obtained 32 categories averaging approximately 16 nouns apiece. Examples of the

clusters used in our experiments are shown in Table 3.1.

Each model produced a clustering over the nouns taken from the McRae et al.

norms which we compared against the human-produced gold standard clustering de-

scribed above; to evaluate cluster quality we computed the F-score measure described

in Agirre and Soroa (2007). Under their evaluation scheme, the gold standard is parti-

tioned into a test and training corpus, the latter of which is used to derive a mapping of
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Figure 3.4: Performance of the topic model and Chinese Whispers using dependencies

and a bag of words context window.

the induced clusters to the gold standard labels. This mapping is then used to calculate

the system’s F-score on the test corpus. We calculated F-score as the harmonic mean

of precision and recall defined as the number of correct members of a cluster divided

by the number of items in the cluster and the number of items in the gold-standard

class, respectively (See Chapter 2 for details).

3.3.1.2 Results

All scores were computed according to the F-score measure for unsupervised evalu-

ation described in Agirre and Soroa (2007). Precision and recall were defined as the

number of correct members of a cluster divided by the number of items in the cluster

and the number of items in the gold-standard class, respectively.

CW and the topic model produced clusters for 517 nouns. As both models are non-

parametric, they induce the number of clusters (i.e. categories) from the data as well

as which nouns belong to these clusters. The topic model partitioned the target nouns

into 167 clusters and CW into 35.

Compared to the gold-standard clustering, the topic model achieved an F-score

of 0.179; CW obtained an F-score of 0.212 when using a bag of words context window.

The model’s performance improved to an F-score of 0.371 when dependency relations

were used. To put these numbers into perspective, we also implemented a baseline

algorithm that groups nouns into clusters randomly, which achieved an inferior F-score

of 0.135. Overall, our results indicate that more fine-grained linguistic information

beyond simple co-occurrence is beneficial for categorisation. Figure 3.4 shows how
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performance on the category acquisition task varies over time (i.e. over the course of

encountering all documents in the training set). As can be seen, the quality of clusters

produced by CW increases with additional data, i.e. the algorithm’s performance

improves with more iterations.

3.3.2 Experiment 3: Child Category Acquisition

The primary goal of the preceding experiment was to explore how effectively the two

models capture large-scale category information. Of greater interest, however, is mod-

eling children’s performance on an acquisition task — determining whether the linguis-

tic input to which children are exposed enables their learning of high-level semantic

categories such as those seen in Experiment 1. To answer this question we applied our

incremental models to a corpus of child-directed speech and evaluated the resulting

categories against the gold-standard clusters used previously.

Intuitively, one would expect the information content and complexity of child-

directed speech to increase in relation to the age of the target child. As a result, it

should be possible to extract richer categories from speech directed to older children.

3.3.2.1 Method

The CHILDES (MacWhinney 2000) corpus of infant- and child-directed speech was

used to construct training documents for both models. CHILDES consists of a large

number of transcripts in a multitude of languages, each recording a free-form inter-

active session between a child and one or more adults (parents); from these the tran-

scripts involving American English speakers (4392 transcripts involving 43 children)

were selected, with each grouped according to the child’s age in months. All utter-

ances produced by the child were excluded from the final documents, leaving a corpus

of child-directed speech organized by target age. While it would be ideal to use a large

corpus directed at at single child, so as to accurately capture the linguistic environ-

ment in which category learning occurs (Baroni et al. 2007), to our knowledge no such

corpus exists.

Both the incremental CW and nonparametric topic model were applied to this cor-

pus using the same parameters as in Section 3.3.1. For CW we used only a bag-

of-words representation of context, dropping the dependency information previously

employed. While the final result of the experiment in Section 3.3.1 suggests that richer

representations, such as those derived from a dependency parse, yield more accurate
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Figure 3.5: Model performance and reading level within CHILDES.

categories, the spoken nature of CHILDES prevented us from making use of such

representations (as the parser produced consistently erroneous output). Furthermore,

including lexicalised dependencies would be unrealistic, as complex syntactic infor-

mation is almost certainly not available to children. Parameters for the topic model

were set as in the previous experiment. The resulting clusters were evaluated against

the gold-standard clusters from Section 3.3.1. Additionally, a complexity measure for

each document was computed using the Flesch-Kincaid Grade Level (FKGL) index.5

FKGL yields a readability score that corresponds to a United States grade level (lower

scores mean that the text is easier to read). For example, a score of 8.2 would indicate

that the text is expected to be understandable by an average student of age 13–14. One

would expect the readability of child-directed speech to be generally low but (crucially)

to increase with age.

5The FKGL index estimates readability as a combination of the average num-
ber of syllables per word and the average number of words per sentence:
FKGL = 0.39

(
total words

total sentences

)
+1.8

(
total syllables

total words

)
−15.59.
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3.3.2.2 Results

Figure 3.5 shows how model performance (F-score) varies with age together with the

average reading level (FKGL) of speech directed at each age group. For clarity the

results in Figure 3.5 are grouped into six-month bins. As can be seen the performance

of the two models mirrors that of the previous experiment (Section 3.3.1). CW yields

better F-scores compared to the topic model; its performance also improves with more

data. We next examined the linear relationship between the FKGL readability index

and the models’ output as measured by F-score using correlation analysis. CW and

FKGL were significantly correlated (Pearson’s r = 0.572, p < 0.05). The topic model

did not correlate significantly with the FKGL or with Chinese Whispers. These results

corroborate the findings of Section 3.3.1 – CW outperforms the topic model in terms

of F-score and seems to more faithful simulate infant category learning.

Inspecting the output of the topic model’s output suggests that its poor performance

stems from an inability to produce an appropriate number of categories. With low γ

settings the model exhibited a very strong preference for grouping words into no more

than one or two topics; at higher settings it exhibited the reverse preference, organ-

ising words into extremely fine-grained categories. We attribute this effect to the ex-

treme amount of noise present in the CHILDES data, and the lack of coherence within

documents. The above results thus use the same parameter settings as in preceding

experiments.

3.3.3 Experiment 4: Incremental Category Acquisition

While the previous experiments explored how effectively the two models capture large-

scale category information it did not assess the effect of incrementality. The difficulty

in performing such an evaluation is that it requires a snapshot of category structure

throughout the process of category acquisition. Getting such snapshots from children

would be ideal, however a longitudinal study of category acquisition would be a major

undertaking spanning several years. Getting such snapshots from adults is also prob-

lematic, as they clearly possess a great deal of world knowledge about the target words

used in a hypothetical experiment. As a compromise we conducted a study in which

participants were given a series of paragraphs containing nonsense words and then

asked, after having read each paragraph, to group the nonsense words into categories.

Our hope was that the use of nonsense words would prevent adults from employing any

previously-acquired word knowledge to which they might have access, making their
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process for constructing new categories more similar to that of a child’s. If so, such a

study would illuminate the kinds of interim categories the mind might construct when

presented with minimal information about a set of novel stimuli.

3.3.3.1 Method

Thirteen source documents were compiled from Wikipedia articles on various techni-

cal domains, including medicine, physics, biology, and mixology6. Each document

consisted of 3–5 paragraphs, each containing between 4–6 sentences in which a small

number of re-occurring content words were replaced with nonce words (nine on aver-

age per document). Figure 3.7 shows an example document presented to participants;

a full list of documents annotated with nonce words is provided in Appendix B. The

study was completed by 250 participants, mostly undergraduates from the University

of Edinburgh.

One serious concern in conducting a study like this is ensuring that participants do

not actually perform a separate, but related, task in which they instead determine the

mapping between nonsense words and their meaningful equivalents. We mitigated this

problem by extracting the text from highly technical documents, the subject matter

of which would almost certainly be unfamiliar to participants and thus limiting the

amount of world knowledge they could bring to bear. Also of concern was avoiding

priming subjects with the number of categories; to avoid such influence, participants

were asked to group target words into clusters by dragging items together on a virtual

canvas, rather than by assigning labels or placing items into pre-specified bins. A

snapshot of the experimental interface our participants saw is given in Figure 3.6.

The topic model and CW were trained on the same set of paragraphs, and the

interim clustering produced after processing each document saved, in order to investi-

gate how well the models captured the interim categories formed during incremental

learning. Note that both models were trained from a blank state, reflecting a lack of

pre-existing world knowledge. Again, we used a bag-of-words representation for CW

as the prevalence of nonsense words in the data resulted in many parsing mistakes.

Following on Experiment 1, we then applied the topic model and CW to the same set

of paragraphs and evaluated the resulting categories against those produced by partic-

ipants, again using F-score (Agirre and Soroa 2007).

6Molecular Mixology is the term applied to the process of creating cocktails using the scientific
equipment and techniques of molecular gastronomy.
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In this study you’ll be given a series of 4-8 short paragraphs to read. The paragraphs contain

several highlighted nonsense words; your job is to figure out which of these words belong to

the same category. You may decide that all the words belong to the same category (they’re all

the same kind of thing), that each belongs to its own category (they’re all different things), or

anything in between (some are one kind, some are another).

After you read each paragraph, use your mouse to group the words below it into whichever

categories you think are appropriate. Once you have grouped the words into categories, click

”next” to get the next paragraph.

This first paragraph is just an example; after reading it you might decide that it talks about two

kinds of things, fruits and vegetables, and decide to group the words ”apple”, ”orange”, and

”pear” into one category, and the words ”lettuce” and ”spinach” into the other.

As you work your way through the experiment, words you’ve already seen will turn from blue

to grey. You can still move these words around, though, so if you decide that your previous

grouping was incorrect, you can (and should!) change it. Don’t worry if you can’t understand

what the paragraphs are talking about. The words will be scrambled; do your best to figure out

which (nonsense) words belong together anyway!

The fendle is the very dense region consisting of nucleons (daxs and tomas) at the

center of a gazzer. Almost all of the mass in a gazzer is made up from the daxs

and tomas in the fendle, with a very small contribution from the orbiting wugs. The

diameter of the fendle is in the range of 1.5fm (1.75×10-15m) for tulver to about

15fm for the heaviest gazzers such as tupa.

fendle tupa

gazzer tulver

dax toma

wug

Figure 3.6: The incremental categorisation task as seen by participants in Experi-

ment 4. Each trial consisted of a series of paragraphs from the same source document;

the words to be clustered (shown in boldface) remained constant, with participants

asked to update their clustering after each trial.



54 Chapter 3. Incremental Models of Category Acquisition

1 In physics, the word annihilation is used to denote the process that occurs

when a subatomic fendle collides with its respective antifendle. Since blicket
and tulver must be conserved, the fendles are not actually made into noth-

ing, but rather into new fendles. Antifendles have exactly opposite additive

quantum numbers from fendles, so the sums of all quantum numbers of the

original pair are zero.

2 Hence, any set of fendles may be produced whose total quantum numbers are

also zero as long as conservation of blicket and conservation of tulver are

obeyed. When a low-blicket dax annihilates a low-blicket tupa (antidax),

they can only produce two or more gamma ray tomas, since the dax and tupa
do not carry enough mass-blicket to produce heavier fendles and conservation

of blicket and linear tulver forbid the creation of only one toma. These are

sent out in opposite directions to conserve tulver.

3 However, if one or both fendles carry a larger amount of kinetic blicket, vari-

ous other fendle pairs can be produced. The annihilation (or decay) of an dax
tupa pair into a single toma cannot occur in free space because tulver would

not be conserved in this process. The reverse reaction is also impossible for

this reason, except in the presence of another fendle that can carry away the

excess tulver.

Figure 3.7: A sequence of paragraphs presented to participants in Experiment 4. Para-

graphs were drawn from http://en.wikipedia.org/wiki/Annihilation, with se-

lect content words replaced with nonsense words.
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3.3.3.2 Results

Firstly, we assessed how well our participants agreed on the category acquisition task.7

We computed the F-score of a single participant’s clustering for each phase as the av-

erage F-score between it and each of the other participants’ clusterings for that phase;

and then calculated the mean reliability as the average F-score of all phases for all par-

ticipants. On the category acquisition experiment, participants achieved a mean relia-

bility of 0.694. Interestingly, inter-annotator agreement for the final of five-paragraph

documents is significantly lower, likely due to differences in task difficulty between

source documents. CW achieved a comparable F-score of 0.656, followed by the topic

model with an F-score of 0.634. These F-scores were computed by a procedure similar

to the human reliability described above. The model was treated as a single partici-

pant and the F-score for each stage was computed as the average F-score between the

model’s clustering in that stage and each participant’s clustering, with the individual

stage scores averaged to produce the final score.

Figure 3.8 shows the F-scores achieved by the two models for each phase against

the human upper bound. It is interesting to note that both models are close to human

performance, with Chinese Whispers having mostly the lead over the topic model. In-

terestingly, inter-annotator agreement drops precipitiously at the final stage; based on

an inspection of participants’ clusters after 4 and 5 paragraphs it appears that many

participants extensively revised their clusters after encountering the final paragraph.

Feedback from participants corroborates this observation, with a number of partici-

pants commenting on their tendency to ‘second-guess’ themselves after encountering

the final paragraph.

3.4 Discussion

At first glance the scores on the large-scale task (Section 3.3.1) for both models ap-

pear quite low. Our aim in this first experiment, however, was merely to establish a

comparison between the two approaches on a clustering task. This is challenging con-

sidering that the models are expected to assign 500+ words into an unspecified num-

ber of well-defined semantic categories from word co-occurrence information alone.

Humans acquire semantic categories from a richer environment based on their senso-

rimotor experiences in addition to linguistic input.

7Subject data for the experiments described in Section 3.3.3 is available from http://bit.ly/
categorization.
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Figure 3.8: Model performance and inter-annotator agreement after encountering N

paragraphs, averaged across documents. Note that F-score is here used to compute

the similarity of performance between participants rather than to assess the accuracy

of individual models or participants. As a result, we should expect F-score to decrease

over time as participants’ categorisations diverge from one another in the face of in-

creased information.

Regardless, a strict comparison of results shows that CW outperformed the topic

model on this large-scale category experiment. Manual inspection of the clusters out-

put by the topic model suggests an explanation: the learnt topics, while clearly cap-

turing some notion of semantic relatedness between words, rarely correspond to the

desired semantic categories. Instead they cut across categories, collating words that

share a theme or context rather than words belonging to a common category. The clus-

ters output by CW, conversely, capture more of the semantic category information but

tend to do so at a higher level (e.g. conflating FRUIT, VEGETABLE, and FOOD into a

single meta-category).

This is particularly interesting in light of the differences between the two models;

CW is a simpler model, both in terms of the way it represents and forms categories.

Recall that the algorithm creates a unipartite graph with one type of nodes (i.e. words)

which can be interconnected freely. In the topic model, semantic information is orga-

nized in a bipartite graph consisting of words, topics, and their interconnections. This

more structured representation does not seem appropriate for the category acquisition

task. In particular, the notion of topic as it is used in the context of the topic model is
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not equivalent to that of a semantic category. The relative success of CW, combined

with its simplicity and plausibility, suggests that such comparatively simple models

can often provide a better approach for modeling low-level cognitive tasks. From this

observation we reach two conclusions: for one, it is likely a mistake to conflate the

notion of a ‘topic’ as it is used in the context of a topic model with that of a semantic

category.

The results from Section 3.3.2 involving child-directed speech lend themselves

to a similar conclusion; CW learns categories which are closer to the gold standard

and presumably more closely aligned with those learnt by children during acquisition.

While we obviously have no access to this actual category structure, it is reasonable to

assume that it grows in complexity proportionally to the complexity and quantity of the

input to which a child is exposed. Additionally, there are numerous parallels that could

be drawn between such a graph-based model of category representation and the results

of research into category-specific deficits in patients with cognitive impairments (Tyler

et al. 2000). While not something we have explored here, a graph-based representation

could be used to simulate category-specific defects or localised memory loss.

The results of the third experiment show that CW (and the topic model to a lesser

extent) produce categories incrementally that are both meaningful and cognitively

plausible. Interestingly, in this experiment the upper bound (i.e. inter-annotator agree-

ment) is high despite the seeming difficulty of the task8. This suggests that people

are quite consistent in the types of categories they form even when those categories

are based on only one or two pieces of information, and enforces the idea that, in the

absence of real-world knowledge, people learn categories in an incremental fashion

(Lamberts and Shapiro 2002).

Both of the models explored in this chapter model acquire categories as flat, non-

overlapping clusters; when new concepts are encountered they are placed into a single

category based on their similarity to existing exemplars and their relative position in

the semantic network. Neither model considers and sort of higher-order relationship

between categories. To introduce such relationships we need to model hierarchical cat-

egory structure, in which we consider both relations between exemplars and categories

(e.g. apple and orange belonging to the category FRUIT) and relations between pairs

of categories (e.g. FRUIT and VEGETABLE belonging to the supercategory FOOD). In-

spection of the clusters produced by participants in Section 3.3.3 reveals that, even

8While conceptually unsurprising, we nevertheless found this result somewhat unexpected given the
number of complaints from participants regarding the difficulty of the task.
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when presented with explicit instructions to organise words into clusters, participants

often chose to organize words into hierarchies rather than flat categories. While it is

far from clear that the cognitive mechanisms for organising concepts into categories

are inherently hierarchical (Sloman 1998), it seems equally apparent that flat clusters

are insufficient for capturing cognitive performance on categorisation tasks. In the

following chapter we explore the tendency of our participants to spontaneously gen-

erate hierarchical structures in greater depth and demonstrate a model of hierarchical

category acquisition which draws inspiration from the graph-based Chinese Whispers

model presented here.



Chapter 4

Incremental Category Acquisition

Using Hierarchical Random Graphs

In the previous chapter we presented a model of natural language category acquisition

and demonstrated its ability to learn meaningful categories from text. This model was

similar to the majority of existing categorisation models in that it learnt a flat category

structure, i.e. it organised concepts into clusters but described no explicit relationship

between those clusters. Under our approach in the previous chapter concepts were

grouped into hard clusters, e.g. in which an exemplar tomato belonging to category

FRUIT may not also belong to category VEGETABLE. An alternate approach would

have been to organise concepts into soft clusters, e.g. in which tomato may belong

to both FRUIT and VEGETABLE to a varying degree. Neither representation describes

the relationships between categories (e.g. FRUIT and VEGETABLE both belong to an

overarching category PLANTS). In this chapter we attempt to address this failing by

introducing a model of category acquisition which learns an hierarchical structure over

a set of concepts. While it acquires significantly more complex representations than its

predecessor this new model requires no additional input or supervision (i.e. it operates

on the same input as the previous, flat model), making the task considerably more

difficult than before.

A major focus of the flat category acquisition model of the previous chapter was

on maintaining incrementality and non-parametricity, two key properties we had iden-

tified as being essential for maintaining cognitive plausibility. These constraints are

carried forward into this chapter and are addressed using similar techniques to those of

Chapter 3. We describe a non-incremental version of our model along with the process

for evaluating its output and assess the model’s performance on a number of datasets

59
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using both corpus- and feature-based representations. We then present a modified ver-

sion of the model which maintains incrementality and evaluate this variant against

incrementally constructed hierarchies produced by human participants in an elicitation

study. We conclude by highlighting the difficulty of this task and the strength of the hi-

erarchical model by exploring the disagreement between participants in the elicitation

study.

4.1 Related Work

Traditional models of category acquisition tend to fall into one of two classes: exem-

plar models and prototype models. In an exemplar model categories are represented

by a set of previously encountered instances of members of the category (Medin and

Schaffer 1978, Nosofsky 1988); novel concepts are categorised through comparison

with the stored exemplars for each category. Conversely, in a prototype model cate-

gories are represented by a single prototypical instance (Reed 1972, Rosch 1973) and

categorisation of novel concepts is performed through comparison with only the pro-

totype for each category. While the greater flexibility of exemplar models has been

often shown to provide a significant advantage (Nosofsky 1998), a great deal of recent

work has focused on categorisation models in between these two extremes. The Adap-

tive model of Anderson (1990) and the Varying Abstraction Model of Vanpaemel and

Storms (2008) both represent categories using clusters of multiple exemplars; other

work has represented categories using multiple prototypes (Verbeemen et al. 2007).

All of these models, however, address only the horizontal aspect of categories

(Rosch 1978) – they are of limited use when applied to the task of determining cat-

egory membership at differing levels of abstraction. Varying levels of abstraction in

category definitions, along with relationships between categories (e.g. the hyponym-

hypernym relationships between DOG, MAMMAL, and ANIMAL), have seen less study.

Griffiths et al. (2007a) apply an hierarchical Dirichlet process to the task of category

acquisition, but stop short of applying their two-level solution to the task of inferring

hierarchical structure, instead using a nested hierarchiy of Dirichlet processes to inter-

polate between exemplar and prototype representations. Somewhat more applicably,

Palmeri (1999) and Verheyen et al. (2008) apply traditional exemplar based models

of category acquisition to the task of inferring relationships between categories. Their

results indicate that participants’ preference for so-called basic-level categories (Rosch

1978), previously believed to be more-or-less constant, varies strongly across categori-
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sation tasks and with respect to the order in which concepts are encountered.

From a more computational standpoint a great deal of research has focused on the

task of inferring hierarchical structure from text, often in the form of inducing task-

specific lexical taxonomies. Semantic resources like WordNet, a lexical taxonomy

organised according to various semantic relations (Fellbaum 1998), have proven in-

valuable across a wide variety of natural language processing tasks. As a consequence

there exist a large number of systems addressing aspects of the taxonomy induction

task, from term extraction (identifying a list of concepts to be taxonomised; Kozareva

et al. (2008)) to term relation discovery (identifying semantic relations, e.g. IS-A, be-

tween terms; Hearst (1992); Berland and Charniak (1999)) and fully automatic taxon-

omy construction (creating an hierarchical structure over a set of terms; Kozareva and

Hovy (2010); Navigli et al. (2011)). Unlike the model presented here, these approaches

tend to be supervised or semi-supervised, and almost universally operate directly on

text corpora rather than some form of intermediate representation. Furthermore, they

often discard the structural flexibility of recent categorisation models (e.g. Griffiths

et al. (2007a), Vanpaemel and Storms (2008)), preferring to impose a pre-determined

structure on the induced taxonomy. They also tend to reflect a worldview in which

there exists a single ‘correct’ hierarchical organisation for a particular set of terms.

While these assumptions are valid in the context in which these systems are tradition-

ally presented (the automatic extension or inference of WordNet-like resources), they

render the systems cognitively implausible and limit their application to the task of

modelling human category acquisition.

Traditional NLP approaches to the task of taxonomy induction ignore the concept

of incrementality, the idea that human category learning is not segmented into disjoint

‘training’ and ‘testing’ phases but rather takes place alongside concept acquisition and

category application. An incremental learner possessing a set of concepts has at all

times a category structure that explains those concepts to a greater or lesser extent. As

she encounters new concepts they are added to this expanding structure; as the cate-

gory structure is used to make predictions about concepts (either novel or previously

observed) it is refined and updated. After encountering a great many concepts and

making many category-inspired predictions, the incremental learner will likely possess

a similar category structure to that of a non-incremental (‘batch’) learner. Crucially,

however, she will have been able to make use of this structure from the observation of

her very first concept. Behavioural evidence (Bornstein and Mash 2010) suggests that

the incremental learner more accurately models the process by which human learners
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acquire new concepts and leverage category structure to predict properties of those

concepts.

In the following section we describe a model of hierarchical category acquisition

which respects these constraints: our approach is unsupervised, operates on a graph-

based representation, and uses a model averaging technique to avoid imposing struc-

tural bias on the acquired hierarchy. While the output of the model is a single organisa-

tion of concepts into a hierarchical structure, this final hierarchy represents a consensus

drawn from a forest of multiple, equally-valid organisations. In our initial experiments

we employ a non-incremental version of the model, but it is trivially adapted to the task

of incremental learning and we explore the effect of such an adaptation in subsequent

experiments.

4.2 Hierarchical Random Graphs

The Hierarchical Random Graph (HRG) model has been applied to the construction

of hierarchical representations for a wide variety of structured and unstructured net-

work data: a bacterial metabolic network, a food-web among grassland species, and a

network of associations amongst terrorist cells (Clauset et al. 2008). In a more light-

hearted application, Clauset et al. (2007) illustrated the appeal of the HRG’s implicit

model selection technique by reconstructing the high-level conference structure be-

tween (American) college football teams from a network of matches. Despite the

demonstrable flexibility of the model and its clear successes on a wide variety of data,

the only language-related application of which we are aware concerns word sense in-

duction. Klapaftis and Manandhar (2010) create a graph of contexts for a polysemous

target word and use an HRG model to organise them hierarchically under the assump-

tion that differences in tree height between contexts correspond to differing levels of

sense granularity. The advantages of the HRG model in our context mirror theirs;

traditional category acquisition models, like their counterparts in word sense disam-

biguation, generally impose a flat structure on their target data. Additionally, the HRG

operates on an intermediate, graph-based representation (rather than directly on cor-

pora) and requires no outside supervision.

Inference using Clauset et al.’s HRG model can be described as a two-step process.

In the first step the model repeatedly samples dendrograms from the space of possible

binary trees over a set of concepts using probabilities derived from a graph describ-

ing the pairwise relationships between those concepts. Once this sampling process
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has reached convergence (i.e. subsequent samples no longer result in any signficant

improvement in fit), the model samples an ensemble of structures, each representing a

plausibly-fitting dendrogram, and merges this ensemble to produce a consensus hierar-

chy. While each structure in the post-convergence ensemble (and, indeed, the ‘best-fit’

dendrogram sampled at convergence) describes a binary tree the application of this

final step allows the model to determine the most appropriate hierarchical structure

without imposing a significant bias towards particular structures (i.e. preferring flat

clusters or deep, n-ary trees.). This consensus process can also be viewed as a form of

model selection (Holyoak 2008) in which the HRG uses input data to not only infer a

suitable structure but also the form that structure should take.

This approach differs from hierarchical clustering in that it explicitly acknowledges

that most real-world networks have many plausible hierarchical structures and does not

therefore seek a single hierarchical representation for a given network. It also fits well

with the nature of category acquisition, in which there rarely exists a uniquely correct

categorisation that fully explains a set of concepts. Rather, it is most often the case that

different categorisations of the same concepts are appropriate for different tasks and

criteria.

More formally, an HRG consists of a binary tree and a set of likelihood parameters,

and operates on input organised into a semantic network, an undirected graph in which

nodes represent terms and edges between nodes indicate a relationship between pairs

of terms (Figure 4.1a). From this representation, the model constructs a binary tree (a

dendrogram) whose leaves correspond to nodes in the semantic network (Figure 4.1b);

the model then employs a simple Markov chain Monte Carlo (MCMC) process in

order to explore the space of possible binary trees and derives a consensus hierarchical

structure from the ensemble of sampled models (Figure 4.1c).

4.2.1 Representing Hierarchical Structure

Formally, consider a semantic network S = (V,E), where V = {v1,v2 . . .vn} is the set

of vertices, one per term, and E is the set of undirected edges between terms in which

Ea,b indicates the presence of an edge between va and vb.

Given a network S the HRG constructs a binary tree D whose n leaves correspond

to V and whose n− 1 internal nodes denote an hierarchy over V . Because the leaves

remain constant for a given S, define D as the set of internal nodes D = {D1,D2 . . .Dn}
and associate each edge Ea,b ∈ E with an internal node Di being the lowest common
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Figure 4.1: Flow of information through the Hierarchical Random Graph algorithm.

From a semantic network (4.1a), the model constructs a binary tree (4.1b). Edges in

the semantic network are then used to compute the θ parameters for internal nodes in

the tree; the maximum-likelihood-estimated θ parameter for an internal node indicates

the density of edges between its children. This tree is then resampled using the θ pa-

rameters (4.1b) until the MCMC process converges, at which point it can be collapsed

into a n-ary hierarchy (4.1c). The same collapsing process can be also used to identify

a flat clustering (4.1d).

parent of a,b ∈ V . The core assumption underlying the HRG model is that edges in

S have a non-uniform and independent probability of existing. Each possible edge

Ea,b ∈ E exists with a probability θi, where θi is associated with the corresponding

internal node Di.

For a given internal node Di, let Li and Ri be the number of leaves in Di’s left

and right subtrees, respectively; let Ei be the number of edges in E associated with Di

(colloquially, the number of edges in S between leaves in Di’s left and right subtrees).

For each Di ∈ D, we can estimate the maximum likelihood for the corresponding θi

as θi =
Ei

LiRi
. The likelihood L(D,θ|S) of an HRG over a given semantic network S is

then given by:

L(D,θ|S) =
n−1

∏
i=1

(θi)
Ei(1−θi)

LiRi−Ei (4.1)

4.2.2 Sampling Hierarchical Structures

Because the space of possible dendrograms that can be constructed over a set of n

concepts is super exponential with respect to n (Clauset et al. 2007), the HRG makes

use of a Markov chain Monte Carlo (MCMC) process (Algorithm 3) to determine the

most appropriate dendrogram for a given semantic network. During each iteration of

this process the algorithm randomly selects a node within the current dendrogram;
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Algorithm 3: MCMC Sampling for Hierarchical Random Graphs

Compute the likelihood L(D,θ) of the current binary tree.1

Pick a random internal node Di ∈ D.2

Randomly permute Di according to Figure 4.2, yielding a modified dendrogram3

D̂.

Compute the likelihood L(D̂,θ) of this new dendrogram.4

if L(D̂,θ)> L(D,θ) then5

accept the transition;6

else7

accept with probability L(D̂,θ)/L(D,θ).8

end9

Repeat;10

A B

CA

B C A

B

C

Figure 4.2: Subtree permutations used by the HRG’s sampling process. Any inter-

nal node with subtrees A, B, and C can be permuted to one of two possible alternate

configurations. Shaded nodes represent internal nodes which are unmodified by such

permutation.

the subtree rooted at this node is permuted according to Figure 4.2. If the permuta-

tion improves the overall likelihood of the dendrogram the transition is accepted and

the process repeats. If the permutation fails to improve the overall likelihood of the

dendrogram it may be accepted according to standard Metropolis acceptance rules,

i.e. with a probability proportional to the difference in likelihood (L(D̂,θ)/L(D,θ))

between dendrograms.

4.2.3 Inferring a Consensus Hierarchy

Once the MCMC process has converged the model is left with a dendrogram over

the terms from the input semantic network. As in standard hierarchical clustering,
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Figure 4.3: An illustration of the consensus hierarchy procedure. From the three sam-

pled dendrograms on the left we identify the clusters encoded in each dendrogram;

dendrograms (a),(b) and (c) encode the clusters {AC,ABC,DE,DEF,ABCDEF},
{BC,ABC,EF,DEF,ABCDEF}, and {AB,CD,ABCD,EF,ABCDEF}, respectively.

Rejecting those clusters which do not appear in a majority of dendrograms leaves the

clusters {ABC,EF,DEF,ABCDEF}, which are encoded in the consensus hierarchy

(d).

however, this imposes an arbitrary structure which may or may not correspond to the

observed data — the dendrogram at convergence will be similar to an ideal binary

tree given the graph, but a binary tree may not be the most plausible organisation of

concepts. Indeed, for an hierarchical categorisation task it is quite unlikely that a bi-

nary tree will provide the most appropriate representation of the relationships between

concepts.

To avoid encoding such bias we employ a model averaging technique to produce a

consensus hierarchy. For each of a set of dendrograms sampled after convergence, this

process first identifies the set of possible clusters encoded in the dendrogram, e.g. the

dendrogram in Figure 4.1b encodes the clusters {AB,ABC,EF,D,DEF,ABCDEF}. As

in Clauset et al. (2007), each cluster instance is then weighted according to the likeli-

hood of the originating HRG (Equation 4.1); it then sums the weights for each distinct

cluster across all resampled trees and discard those whose aggregate weight is lower

than 50% of the total observed weight. The remaining clusters are then used to recon-

struct an hierarchy in which each subtree appears in the majority of trees observed after

the sampling process has reached convergence (hence the term consensus hierarchy).

4.2.4 An Incremental Adaptation of the Hierarchical Random Graph

Model

Due to the use of a random sampling technique for inference and, more significantly,

the reliance on a fully-formed input graph), the HRG as described is not an incremental
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model. In this section we describe a set of modifications to the Hierarchical Random

Graph model that allow it to learn an hierarchical structure in an incremental fash-

ion. Because of its statistical nature, i.e. the use of an MCMC process to search the

space of structures, these modifications are less straightforward than those required to

incrementalise the Chinese Whispers model (see Chapter 3, Section 3.2.1).

Algorithm 4: An incremental version of the Hierarchical Random Graph algo-

rithm.

Initialise an empty semantic network S and dendrogram D,θ.1

for each instance of a concept c do2

if c ∈ S then3

Update S with modified similarities;4

else5

Add c to S;6

Identify the leaf node l = argmaxn∈D sim(c,n);7

Create a new internal node n having c and l as children;8

Replace l with n in D;9

end10

Resample D,θ using Algorithm 3.11

end12

Where a batch version of the HRG begins with a fully-formed semantic network

derived from an (unspecified) external source and a randomly initialised dendrogram

over the concepts therein, an incremental version by definition begins with an empty

network and a correspondingly empty dendrogram. As novel concepts are encountered

they are added to both the semantic network, with edges connecting to similar, previ-

ously encountered concepts, and to the dendrogram. The dendrogram is updated to

include the new concept by identifying the existing concept to which it most similar

and replacing that concept in the dendrogram with a node possessing both the new

and existing concepts as children. As new evidence concerning existing concepts is

encountered the semantic network is updated with new similarities (possibly adding

or removing edges between concepts) and the dendrogram resampled to reflect these

changes. A more formal description of this process is presented in Algorithm 4.

Modified to operate in this fashion the HRG can be accurately described as an

incremental learner: it possesses at all times an hierarchical structure over exactly the



68 Chapter 4. Incremental Category Acquisition Using Hierarchical Random Graphs

set of concepts it has encountered, and this structure can be used to make predictions

about a concept immediately after encountering it for the first time. Unfortunately, the

nature of the HRG means that this structure will necessarily be a binary dendrogram.

To overcome this limitation we repeat the consensus hierarchy step of the HRG after

each iteration (i.e. after encountering each new piece of evidence).

4.3 Evaluating Inferred Hierarchies

Evaluation of taxonomically organised information is notoriously hard (Hovy 2002)

due to the inherently subjective and application-specific nature of the task (e.g. a dol-

phin can be a mammal to a biologist, but a fish to a fisherman or someone visiting an

aquarium). Defining a ‘gold-standard’ organisation against which we can evaluate an

induced hierarchy is consequently difficult; while we can (and do!) make use of man-

ually constructed ontologies such as Wordnet (Fellbaum 1998), we would ideally like

to evaluate the output of our model against a wide range of equally valid hierarchies.

Assuming that we have identified a gold-standard hierarchy (or, again, a set of

equally valid hierarchies), it remains unclear how we should assess the degree to which

an hierarchy produced by our model captures the relational knowledge encoded in

the gold standard. Computational approaches to taxonomy induction often employ

a task-based evaluation in which a model-induced hierarchy is evaluated based on its

accuracy at predicting specific relations, e.g. IS-A, between concepts (Yang and Callan

2009). Alternatively, one could employ more tree-theoretic measures like tree edit

distance (Demaine et al. 2009) or tree alignment (Bille 2005) to directly compute the

similarity between hierarchies. We take the latter approach and define a novel measure

for scoring the similarity between arbitrary hierarchies over an identical set of leaves;

this measure is then used to assess how well the output of the model matches a gold-

standard hierarchy.

Even assuming that we possess a gold-standard hierarchy and a matching evalua-

tion metric we’re still unable to make meaningful comparisons to previous work; most

research on category acquisition, especially incremental category acquisition, model

the task as one of acquiring flat (rather than hierarchical) category structure (Foun-

tain and Lapata 2011). To enable comparisons against this work we need a means of

evaluating our induced hierarchical category structure as a flat clustering. To do this

we define an heuristic method for collapsing HRG output into clusters and employ

the cluster F-score measure described in Chapter 3 (Cluster F-score; Agirre and Soroa
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banana apple plum pear pineapple avocado cherry peach grape

cranberry strawberry blueberry raspberry honeydew cantaloupe prune raisin mandarin orange lemon grapefruit lime

Figure 4.4: A subset of the Wordnet gold-standard hierarchy for the concept fruit. While

the concept contains a moderate number of exemplars (21), these are organised into a

relatively flat hierarchical structure, with sub-concepts corresponding (roughly) to berry,

melon, dried fruit, and citrus.

(2007)).

4.3.1 Obtaining a Gold-Standard Hierarchy

To assess the hierarchies produced by the HRG model it was necessary to construct a

gold-standard hierarchy over the set of concepts provided to the model. We obtained

such an hierarchy by extracting the is-a relationship tree from WordNet (Fellbaum

1998), taking only concepts and relationships involving words appearing in the McRae

et al. norms. Concepts appearing in the norms but absent from WordNet were removed

from the set of target words provided to the HRG, and thus not assessed; a total of 493

concepts appear in both.

Specifically, we first identified the full hypernym path in WordNet for each noun in

McRae et al.’s 2005 dataset, e.g. Apple > Plant Structure > Natural Object > Physi-

cal Object > Entity. These hypernym paths were then combined to yield a full taxon-

omy over McRae et al.’s concepts; internal nodes having only a single child were recur-

sively removed to produce a final, compact taxonomy containing 186 semantic classes

(e.g. animals, weapons, fruits) organized into varying levels of granularity (e.g. song-

birds > birds >animals). Because the McRae et al. concepts are limited to concrete

nouns, this final taxonomy is rooted in the WordNet Physical Object concept. A vi-

sualisation of a subset of this taxonomy appears in Figure 4.4; the full taxonomy is

encoded in Appendix C.

4.3.2 Flat Cluster Evaluation

To evaluate a flat clustering into classes we use the F-score measure introduced in the

SemEval 2007 task (Agirre and Soroa 2007); like traditional F-Score it is defined as the

harmonic mean of precision and recall. In the context of a cluster evaluation, precision
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Figure 4.5: An illustration of the tree-height correlation metric. For each pair of leaf

nodes, we compute the walk distance between nodes in each hierarchy. The walk

distance between D and E is 3 in (a) and 5 in (b); the tree-height correlation between

(a) and (b) is 0.518.

is defined as the number of correct members of a cluster divided by the number of

items in the cluster; recall is defined as the number of correct members of a cluster

divided by the number of items in the gold-standard cluster.

Because the output of the consensus hierarchy procedure is an hierarchy rather

than a hard clustering, it is necessary to perform an additional post-processing step

(Algorithm 5) in which this hierarchy is flattened into a simple clustering. This can

be done in a straightforward, principled fashion using the HRG’s θ parameters. For

a given H (D,θ) this process identifies internal nodes whose θk likelihood is greater

than the mean θ and who possess no parent node whose θk likelihood is also greater

than the mean. Each such node is the root of a densely connected subtree; each such

subtree is then assumed to represent a single discrete cluster of related items, where

θ̄ = mean(θ) (illustrated in Figure 4.1c).

4.3.3 Hierarchical Evaluation

Although informative, an evaluation based solely on F-score puts the HRG model at

a comparative disadvantage as the task of hierarchy induction is significantly more

difficult than simple, flat clustering. To overcome this disadvantage we propose an au-

tomatic method of evaluating taxonomies directly by first computing the walk distance

between pairs of terms that share a gold-standard category label within a gold-standard

and a candidate hierarchy, and then computing the pairwise correlation between dis-

tances in each tree (Lapointe 1995). This correlation captures the intuition that a ‘good’
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Algorithm 5: Flattening the output of an HRG into a hard clustering

Let Dk be the root node of D.1

if θk > θ̄ then2

output the leaves of the subtree rooted at Dk as a cluster3

else4

repeat 2 with left and right children of Dk.5

end6

hierarchy is one in which items appearing near one another in the gold hierarchy also

appear near one another in the induced one. It is also conceptually similar to the task-

based IS-A evaluation (Snow et al. 2006) which has been traditionally used to evaluate

hierarchy.

Formally, let G = {g0,1,g0,2 . . .gn,n−1}, where ga,b indicates the walk distance be-

tween terms a and b in the gold standard hierarchy. Similarly, let C = {c0,1,c0,2 . . .cn,n−1},
where ca,b is the distance between a and b in the candidate hierarchy. The tree-height

correlation between G and C is then given by Spearman’s ρ correlation coefficient be-

tween the two sets. All tree-height correlations reported in the following experiments

were computed using the WordNet-based gold-standard hierarchy over McRae et al.’s

2005 nouns described in Section 4.3.1.

4.3.4 Comparison Models

To provide a reference for comparison it is necessary to establish a set of baselines

against which the HRG can be evaluated. Because to the best of our knowledge there

does not exist a similar model for acquiring hierarchical categories from a graph-based

intermediate representation, we compare hierarchies inferred by the HRG against those

produced by three models from similar tasks.

Because the task of inferring hierarchical categories follows naturally from the

previous chapter’s task of inferring flat categories, we make a comparison against the

Chinese Whispers model described therein. Because the two models infer different

structures some manipulation is necessary in order to facilitate a comparison; this took

the form of heuristically flattening the HRG’s inferred hierarchies into discrete clusters

and comparing the results against those inferred by Chinese Whispers. Hierarchies

inferred by the HRG model were flattened into discrete clusters using Algorithm 5.

Chinese Whispers and the HRG operate on identical input, a semantic network of



72 Chapter 4. Incremental Category Acquisition Using Hierarchical Random Graphs

Algorithm 6: Standard bottom-up agglomerative clustering

Let K be the set of identified categories1

Initialise K to include one category for each k concept2

while |K|> 1 do3

Let a,b = argmaxa,b sim(a,b)4

Remove a and b from K5

Create a tree node t with a and b as children6

Add t to K7

end8

concepts and relations; both models operate by positing an initial organisation over

the input concepts and iteratively improve this organisation until reaching consensus.

This iterative process differs between the two: Chinese Whispers performs an itera-

tive step by performing a randomised colour propagation between nodes in the input

graph, whereas the HRG employs a more probabilistic, MCMC approach (i.e. permute

the current representation, re-compute the likelihood after permutation, and decide to

accept or reject the permutation according to the increase or decrease in likelihood).

Additionally, both models are unsupervised in as much as they take no additional in-

put beyond the graph to be categorised. External information can of course be intro-

duced by encoding it in the graph, but both algorithms are completely agnostic as to

the source of the input. Neither model makes use of oracle category-exemplar pairs,

seed clusters, or other techniques for introducing supervision. Given these similarities

we would expect the two models to perform similarly on a flat cluster evaluation, i.e.

the hierarchical categorisation induced by the HRG should capture roughly the same

boundaries between categories as the flat clustering produced by Chinese Whispers.

Our second baseline is Brown et al.’s 1992 agglomerative clustering algorithm that

induces a mapping from word types to classes. The Brown et al. algorithm begins

with K categories for the K most frequent concepts and proceeds by alternately adding

the next most frequent concept to the category set and merging the two categories

which result in the least decrease in the mutual information between class bigrams.

The result is an hierarchy over categories with clustered concepts at the leaves. Be-

cause the Brown et al. algorithm relies on direct corpus counts and takes as input a

set of documents rather than a semantic network, we also compare against a standard

agglomerative clustering technique (Sokal and Michener 1958, Algorithm 6). This
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technique produces a binary dendrogram in a bottom-up fashion by recursively identi-

fying concepts or categories (subtrees) with the highest pairwise similarity.

4.4 Large-Scale Experiments

In the following experiments we evaluate the HRG on a series of hierarchy induction

tasks. Because HRGs provide a means of inducing an hierarchy over graph-based

input representations and is not directly affected by the manner in which these graphs

are produced, these experiments were designed to investigate how differences in the

topology and quality of the input graph influence the algorithm’s performance.

Experiments 5 and 6 investigate the quality of the hierarchies induced by the HRG

when provided high- and low-quality input, respectively. Experiment 7 then investi-

gates a novel approach to increasing the quality of the input network without introduc-

ing external supervision. Following these three experiments we conduct an assessment

of how well the HRG reconstructs a forest of human-produced hierarchies (Experi-

ment 8).

All four of these experiments evaluate the HRG and comparison models on a non-

incremental task – given a gold-standard hierarchy (or a set of gold-standard hier-

archies, as in Experiment 8), how well does the model recreate that hierarchy from

a semantic network? Given our stated interest in developing incremental models of

category acquisition, we thus conduct an experiment evaluating the HRG against hi-

erarchies produced by human participants during an incremental categorisation task

(Experiment 9). This experiment is similar in structure and procedure to the analo-

gously incremental experiment in the preceding chapter, Experiment 4.

4.4.1 Experiment 5: Inducing Hierarchies From Featural Represen-

tations

Because the HRG takes as input an abstract, graph-based representation we first con-

sider the case in which the input graph provides high-quality information about the

similarity of concepts. Inducing such a graph automatically, e.g. using corpus-based

similarities or a relation-extraction algorithm, would likely introduce errors which

could complicate an assessment of the HRG. Because the HRG performs only the

hierarchy induction step of a (hypothetical) complete pipeline for concept extraction

and categorisation, we conduct our initial experiment to assess its performance when
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Method F-score Tree Correlation

HRG 0.507 0.168
CW 0.464 —

Agglomerative 0.352 0.137

Feature Norms

Table 4.1: Cluster F-score and tree-height correlation for the HRG and baseline models

using as input a semantic network constructed over McRae et al.’s 2005 nouns and

feature-based similarities.

provided with known good input.

To conduct such an assessment we constructed a semantic network using similar-

ities derived from the feature norming study of McRae et al. (2005). Each noun was

represented as a vector with dimensions corresponding to the possible features gener-

ated by participants in the norming study; the value of a term along a dimension was

taken to be the frequency with which participants generated the corresponding feature

when given the term. For each pair of terms an edge was added to the semantic network

if the cosine similarity between their vector representations exceeded a fixed threshold

(set to 0.15 and tuned empirically on held-out concepts).

The resulting network was then provided as input to the HRG and the resulting

dendrogram resampled until it reached convergence. The binary tree at convergence

was again resampled to produce both a consensus hierarchy and a set of flat clus-

ters (according to the procedure described in Section 4.3.2). The resulting consensus

hierarchy was evaluated by computing the tree-height correlation between it and the

gold-standard (WordNet-derived) hierarchy; the resulting clusters were evaluated by

computing the cluster F-score using a gold-standard (human-produced) clustering (See

Chapter 2, Section 2.4).

Unfortunately, the Brown et al. algorithm operates on corpora rather than a seman-

tic network (or any similar representation that could be derived thereof). As a result it

was omitted from the results listed in Table 4.1. Additionally, we only report cluster

F-score for the Chinese Whispers model as it does not induce an hierarchical cluster-

ing. When evaluated using F-score, the HRG algorithm produces better quality clusters

compared to Chinese Whispers, in addition to being able to organise them hierarchi-

cally. It also outperforms agglomerative clustering by a large margin; a similar pattern

emerges when the HRG and agglomerative clustering are evaluated on tree correlation.
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The taxonomies produced by the HRG are a better fit against the WordNet-based gold

standard; the difference in performance is statistically significant (p < 0.01) using a

t-test (Cohen and Cohen. 1983).

Manual inspection of the induced hierarchies suggests an explanation for the in-

creased performance of the HRG relative to Chinese Whispers on the flat clustering

evaluation, a task on which we might logically expect the latter model to outperform

the former. Because Chinese Whispers is restricted to a flat clustering and cannot

extract fine-grained relations within clusters, it produces a flat categorisation at a con-

ceptually higher level (e.g. identifying a cluster corresponding to animal rather than

separate clusters for mammal, fish, and bird). The more flexible nature of an hierar-

chical categorisation, combined with the heuristic method used to collapse it into a

flat clustering, allows the HRG to make more fine-grained distinctions when possi-

ble. Of course, the gain from a fine-grained hierarchical organisation of concepts is

limited; the agglomerative clustering, which by definition must produce a binary tree,

encodes fine-grained distinctions within logical clusters where none may exist. Forc-

ing the model to identify for each concept a single concept to which it is most similar

produces irrelevant or incorrect distinctions for categories possessing very flat internal

structure.

4.4.2 Experiment 6: Inducing Hierarchies from Corpus-based Rep-

resentations

As the semantic network derived from the McRae et al. feature norms provides what

could plausibly be described as oracle similarities the results of Experiment 5 can be

considered as an upper bound of sorts for what can be achieved by the HRG when

provided with perfect or near-perfect input. Feature norms capture detailed knowledge

about word meaning and concept relationships which would be difficult if not impos-

sible to obtain from corpora. Given this, it is interesting to explore how well the HRG

performs on an hierarchy induction task when provided with a lower-quality semantic

network.

To conduct this assessment we extracted concept similarities using co-occurrence

statistics computed from the British National Corpus (Burnard and Aston 1998) and

provided the resulting semantic network to the HRG, Chinese Whispers, and agglom-

erative models (as in Experiment 5); additionally, we employed the algorithm of Brown

et al. (1992) to induce an hierarchy directly from the corpus. Unfortunately, this algo-
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Method F-score Tree Correlation

HRG 0.276 0.104

CW 0.274 —

Brown 0.258 0.124
Agglomerative 0.122 0.077

Corpus Similarities

Table 4.2: Cluster F-score and tree-height correlation evaluation for hierarchies inferred

over McRae et al.’s 2005 nouns; all algorithms are run on the BNC. Note that tree

correlation for the Chinese Whispers (CW) model is not reported, as it produces only a

flat clustering and not an hierarchy.

rithm requires the number of desired output clusters to be specified in advance; in all

trials this parameter was set to the number of clusters in the gold-standard clustering

(41), thus providing the Brown-induced hierarchies with a non-trivial oracle advantage.

Again as in Experiment 5, target words were represented as vectors in a semantic

space, but with dimensions corresponding to possible co-occurring context words; the

concepts from McRae et al. (2005) were again used as the set of target words. To

construct vector representations we extracted context windows of five words on either

side of each occurrence of a target word along with 5,000 vector components corre-

sponding to the most frequent non-stopwords in the BNC. Raw frequency counts were

transformed using pointwise mutual information to produce the final representations.

These representations were then used to construct a semantic network in which each

node corresponded to a target word; an edge was added between a pair of target words

if the cosine distance between their vectors exceeded a pre-defined threshold. To facil-

itate a comparison with Experiment 5 this threshold was set to 0.15.

This semantic network was then input to all three models (HRG, Chinese Whispers,

and agglomerative clustering). We evaluated the resulting hierarchies, along with the

Brown-induced hierarchy produced directly from the corpus, against the same gold-

standard flat and hierarchical clusterings used in Experiment 5. Results for all four

categorisations are shown in Table 4.2. On the flat clustering evaluated (listed in the ta-

ble as F-score) the HRG has a slight advantage against both Chinese Whispers and the

Brown et al. algorithm; differences in their performance are not, however, statistically

significant. Standard agglomerative clustering is the word-performing method, with a

decrease in F-score of approximately 1.5. On the tree-height correlation evaluation the
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(a) s = 0.0 (b) s = 0.5 (c) s = 1.0

Figure 4.6: A semantic network as derived from the BNC (a) and the same network re-

weighted using a flat clustering produced by CW (b). As s approaches 1.0 the network

exhibits an increasingly strong small-world property, eventually reconstructing the input

clustering only (c).

HRG is comparable to Brown; both algorithms are significantly better (p < 0.01) than

agglomerative clustering.

4.4.3 Experiment 7: Inducing Hierarchies from Small-World Graphs

Performance of the HRG is better when the semantic network is based on feature norms

(compare Tables 4.1 and 4.2), both in terms of tree-height correlation and F-score. This

suggests that the algorithm is highly dependent on the quality of the semantic network

used as input. HRGs are known to operate well on so-called ‘small-world’ networks –

graphs composed of densely connected subregions with relatively few edges between

them (Kleinberg 2000, Clauset et al. 2007). While the feature-based semantic network

input to the HRG in Section 4.4.1 could be accurately described as a small-world graph,

inspection of the corpus-induced network from the previous section (see Figure 4.6a)

shows it to be emphatically not a small-world graph. To determine what effect (if

any) the small-world structure has on the hierarchy ultimately induced by an HRG

we repeated the experiment of Section 4.4.2 using a set of corpus-induced semantic

networks with an artificially-imposed small-world structure.

To impose such structure we first obtained a set of (flat) clusterings over the con-

cepts in the network. These clusterings were taken from the output of the Chinese

Whispers (see Chapter 3 or Biemann (2006) for details) and Brown et al. algorithms

(The agglomerative clustering baseline was omitted due to both its purely hierarchical

nature and its abysmal performance; see Table 4.2). Notably, neither of these algo-
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Method F-score Tree Correlation

HRG 0.276 0.104

HRG + CW 0.291 0.161

HRG + Brown 0.255 0.173

Reweighted Corpus Similarities

Table 4.3: Cluster F-score and tree-height correlation evaluation for taxonomies in-

ferred by the HRG using semantic network derived from the BNC and re-weighted using

CW and Brown.

rithms requires any oracle information (e.g. requiring the specification of the correct

number of categories to infer) and thus do not introduce any outside supervision into

the overall hierarchy induction task.

The process used to impose a small-world structure onto the existing semantic

network is relatively straightforward. We compute a modified weight ŴA,B between

a pair of terms A,B according to Equation (4.2), where s indicates the proportion of

edge weight drawn from the clustering, WA,B is the edge weight in the original (BNC)

semantic network, and CA,B is a binary value indicating that A and B belong to the same

cluster (i.e. CA,B = 1 if A and B share a cluster; CA,B = 0 otherwise).

ŴA,B = (1− s)WA,B + sCA,B (4.2)

The value of the s parameter was tuned empirically on held-out development data

and set to s = 0.4 for both CW and Brown algorithms. Each re-weighted network was

then used as input to the HRG model, with the resulting taxonomies evaluated in the

same manner as in Section 4.4.2.

Table 4.3 shows results for cluster F-score and tree-height correlation for the HRG

when using a graph derived from the BNC without any modifications (i.e. the semantic

network inferred from the BNC and used in Section 4.4.2), as well as two re-weighted

versions using the CW and Brown clustering algorithms, respectively. As can be seen,

re-weighting improves tree-height correlation substantially: HRG with CW and Brown

is significantly better than HRG on its own (p < 0.05). In the case of CW, cluster

F-score also yields a slight improvement. Interestingly, the tree-height correlations

obtained with CW and Brown are comparable to those attained by the HRG when us-

ing the human-produced feature norms (differences in correlations are not statistically
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bed cushion pillow sofa

bow jeans mittens veil blouse coat gown pants trousers leotards dress swimsuit shawl scarf

jacket sweater tie vest bra camisole nylons

0

1

2

3 4

Figure 4.7: An excerpt from an hierarchy induced by the HRG using the BNC seman-

tic network with Brown re-weighting. The HRG does not provide category labels for

internal nodes of the hierarchy, but subtrees within this excerpt correspond roughly to

(0) Textiles, (1) Clothing, (2) Gendered Clothing, (3) Men’s Clothing, and (4) Women’s

Clothing.

significant). An excerpt of an HRG-induced hierarchy is shown in Figure 4.7.

The increase in quality of the resulting hierarchy after re-weighting is particu-

larly exciting given that the resources used to both estimate the original graph and

perform the re-weighting can be automatically obtained from corpora. Constructing

high-quality representations of word meaning using feature norms is costly and time

consuming; these results show that we can approximate word meaning using only dis-

tributional semantics while retaining comparable performance.

4.5 Estimating Human Performance

In the previous experiments we evaluated the HRG against a gold-standard hierarchy

derived from WordNet. While this provides a decent assessment of how well the model

recreates a particular hierarchical structure it fails to address two of our primary moti-

vations for using the HRG in the first place: that a model of category acquisition should

operate incrementally and should not impose a bias in favour of a particular taxonomic

structure. By evaluating against a WordNet-derived hierarchy we implicitly assume

that the correct (or rather, a correct) hierarchy over our set of target words should have

the same or similar structure (in terms of tree depth or granularity) to WordNet; by

performing a only single evaluation based on a fully-specified semantic network we

ignore any impact of incremental learning. Evaluating only the final induced hierarchy

also leaves open the question of how well the model reflects the process of category

acquisition rather than merely the end result.
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To address these oversights we conducted a pair of experiments, one to gauge per-

formance against a set of non-expert, human-produced hierarchies and one to gauge

performance on an incremental category acquisition task. Both experiments took the

form of a web-based elicitation study to obtain human-produced hierarchicies followed

by an evaluation of the HRG (and baselines where possible) on the same task. Section

4.5.1 describes the study and evaluation against human-produced hierarchies; Section

4.5.2 makes use of the same framework to obtain and evaluate a series of incrementally

produced hierarchies.

4.5.1 Experiment 8: Computing a Human Upper Bound

Experiments 5 and 6, in which the HRG and baselines were assessed against a WordNet-

derived hierarchy, demonstrate the strengths of the HRG model for batch category ac-

quisition but fail to address the concern that for a given set of concepts there exist mul-

tiple, equally correct hierarchies describing the relationships between concepts. This

concern stems from the observation that multiple plausible hierarchies may describe

an entirely correct view of the relationships between concepts and categories given dif-

fering criteria for assessing category membership; even the organisation of biological

species into a single taxonomy, perhaps the canonical example of an hierarchical organ-

isation of concepts into categories, is under constant revision (Cavalier-Smith 2004).

For the concepts used in the previous experiments the WordNet hierarchy represents

merely one of many equally valid hierarchies. Noting this, it is interesting to explore

how well the output of the HRG fits within the set of plausible, valid hierarchies over

a fixed set of concepts.

To explore this we conducted an elicitation study in which human participants were

presented with a 12-word subset of concepts (cedar, lemon, pear, tomato, peach, pi-

geon, owl, chicken, lion, tiger, cat, dog, bear, python) and asked to organise them into

arbitrary hierarchies. We then applied the HRG and baselines to induce hierarchies

over these same concepts, evaluating each in turn against those produced by partici-

pants in the study. The list of concepts was chosen heuristically; we first selected a

sub-hierarchy of the WordNet tree (LIVING THINGS) along with its subtrees (e.g. ANI-

MALS, PLANTS), and chose target concepts from within these trees in order to produce

a taxonomy in which some items were differentiated at a high level (e.g. python vs.

dog) and others at a fine-grained level (e.g. lion vs tiger).

The elicitation study was conducted using Amazon Mechanical Turk1, and in-



4.5. Estimating Human Performance 81

python

dog bear lion tiger cat

pigeon chicken owl

cedar

lemon pear peach tomato

lemon pear tomato cedar peach dog cat chicken pigeon owl python bear tiger lion

Figure 4.8: Hierarchies produced by two human participants in the 12-word hierarchy

elicitation study. Note that both hierarchies describe a ‘correct’ organisation of concepts

into categories, with the top hierarchy describing categories at a relatively fine-grained

level and the bottom hierarchy capturing only the distinction between PLANTS and ANI-

MALS.

volved 41 participants from English-speaking countries. No specific guidelines as to

what features participants were to use when organising these concepts were provided.

Participants were presented with a web-based, graphical, mouse-driven interface for

constructing an hierarchy over the chosen set of concepts.

To evaluate the HRG along with the baselines from Section 4.3.4 against the result-

ing hierarchies we constructed a semantic network over the subset of concepts using

similarities derived from the BNC; this network was a subgraph of that used in Section

4.4.2. we also repeated the re-weighting procedure described in Section 4.4.3 using

the clusterings induced by the CW and Brown algorithms over the subgraph to update

edge weights.

Table 4.4 shows the performance of the HRG and baselines from the preceding

sections evaluated against hierarchies produced by participants in the elicitation study.

For the models and baselines the score reported is the mean of the tree-height corre-

1Amazon’s Mechanical Turk (http://mturk.com) is an online ‘marketplace for work’ in which
anonymous, non-expert workers complete simple, atomic tasks in exchange for financial compensation.
In recent years it has been used to explore a wide variety of cognitive science and text processing tasks
(Mason and Suri 2011), including a limited form of supervised hierarchy induction (Dakka and Ipeirotis
2008).
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Method Tree Correlation

HRG 0.412
CW 0.324

Brown 0.181

Agglomerative 0.274

HRG + CW 0.307

HRG + Brown 0.155

Inter-annotator Agreement 0.511

Table 4.4: Model performance and inter-annotator agreement on a subset of the target

words used in Sections 4.4.1-4.4.3, applied to a subset of the semantic network used in

Section 4.4.2. Instead of a WordNet-derived hierarchy, models were evaluated against

hierarchies manually produced by participants in an online study. For models the re-

ported score is the mean tree-height correlation between the hierarchy output by the

model and those created by participants; inter-annotator agreement is reported as the

mean pairwise tree-height correlation between hierarchies created by participants.

lations between the hierarchy output by the model and the hierarchy output by each

participant; inter-annotator agreement is the mean pairwise tree-height correlation be-

tween hierarchies output by participants. Participants achieve a mean pairwise tree

correlation of 0.511, indicating that there is a fair amount of agreement between par-

ticipants regarding the hierarchical organisation between the specified concepts. The

HRG comes close achieving a mean tree correlation of 0.412, followed by Chinese

Whispers and agglomerative clustering. For the sake of completeness we also applied

the Brown model to the paragraphs read by participants, though the amount of data

available was too limited for it to produce meaningful results. In general, the HRG

manages to produce hierarchies that resemble those generated by humans to a larger

extent than any of the competing algorithms applied. The results in Table 4.4 also hint

at the fact that the hierarchy induction task is relatively hard, even for human anno-

tators leveraging real-world knowledge, as participants do not achieve anything like

perfect agreement despite the fact that they are asked to taxonomise only 12 words.

As an example, consider the two human-produced hierarchies shown in Figure 4.8

– both describe plausible, ‘correct’ organisations of the 12 concepts into hierarchi-

cal categories, but at wildly different levels of granularity. Both hierarchies capture

the intuitive division of concepts into PLANTS and ANIMALS, but the topmost hierar-
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chy encodes significant additional information, identifying sub-categories correspond-

ing to the concepts of FELINES, BIRDS, and FRUITS. Because both capture the same

high-level division, however, agreement between these hierarchies is relatively high, at

0.790.

4.5.2 Experiment 9: Evaluating Incrementality

The preceeding three experiments assess the HRG in a standard ‘batch-processing’

context. All three experiments follow the same general form: construct a semantic net-

work over a fixed set of concepts (e.g. using feature norms or co-occurrence counts),

use the HRG to infer an hierarchy over those same concepts, and evaluate the re-

sult against some form of gold-standard hierarchical categorisation. While this model

provides an effective means of evaluating the HRG’s performance on an hierarchical

category acquisition task – and enables a valuable comparison against baseline models

which operate in the same fashion – it provides no assessment of how well the HRG

reflects human performance on this task, as it fails to account for incrementality.

To rectify this we present a novel experiment for assessing the modified model’s

performance against human category learners in an incremental context. As with the

incrementalising modifications to the HRG, this experiment mirrors that of Chapter 3,

Section 3.3.3, with significant changes reflecting the difference in acquiring hierarchi-

cal (rather than flat) category structure.

4.5.2.1 Capturing Incremental Hierarchy Snapshots

Evaluating an incremental model of category acquisition is a significantly more diffi-

cult task than that of evaluating its non-incremental counterpart due to the necessity of

obtaining snapshots of the gold-standard category structure at intermediate stages of

the category acquisition process. Ideally, of course, these snapshots would be obtained

from children, so as to reflect the stages of category learning actually experienced by

humans; conducting such a longitudinal study of category acquisition would, however,

be a serious undertaking. Collecting such snapshots from adults presents other difficul-

ties, as they clearly possess a considerable amount of real-world knowledge encoded

in a well-formed and mostly fixed hierarchy.

To obtain these snapshots we conducted an elicitation study using Amazon Me-

chanical Turk in which partipants were presented with a series of text passages and

asked to construct an hierarchy over the concepts therein. In an attempt to overcome
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the problem of participants’ use of real-world knowledge the passages were drawn

from technical documents describing complex concepts (e.g. particle physics). Ad-

ditionally, the target concepts participants were asked to categorise were replaced by

nonsense words. This obfuscation should prevent participants from leveraging any

domain-specific knowledge they may have.

The passages were drawn from six Wikipedia articles concerning particle physics2,

colour theory3, and biology4. Each document consisted of 3-5 paragraphs, with each

paragraph containing between 4-6 sentences in which a small number of re-occurring

content words were replaced with nonsense words; an example document with para-

graph breaks is shown in Table 4.5 (Appendix D contains the full list of documents and

nonsense words). Paragraphs from a randomly selected document were presented in

order to each participant in a visual, mouse-driven interface in which they could select

and move concepts, group concepts together, and organise groups or concepts into ar-

bitrary hierarchies. The interface was derived from that described in Section 4.5.1; as

in that study we found that participants had very little difficulty in using the interface

to construct a meaningful hierarchy.

After reading the initial paragraph participants were presented with a list of (non-

sense) concepts discussed therein and asked to group them into an hierarchy. After

indicating that they had completed the hierarchy to the best of their ability they were

then presented with the subsequent paragraph and their just-constructed hierarchy; if

the paragraph introduced new concepts these were made available for addition to the

hierarchy. At this stage, and after each following paragraph, participants were asked

to read the paragraph and update their hierarchy if necessary.

To ensure high quality final hierarchies we required all participants to complete a

verification task before allowing them to complete the study proper. In this task partic-

ipants were presented with a single paragraph5and a short list of commonly understood

concepts (i.e. without the technical/nonsense obfuscation previously described). They

were then asked to construct an hierarchy over these concepts based on the paragraph.

Only participants whose hierarchies reflected the obvious divide between concepts (i.e.

the distinction between FRUITS and VEGETABLES) were allowed to complete the re-

mainder of the study. While the use of a screening task (or ‘qualification test’ in

Mechanical Turk parlance) may impose some bias by selecting for a particular type

2en.wikipedia.org/wiki/Hadron, en.wikipedia.org/wiki/Annihilation, en.wikipedia.
org/wiki/Atomic_nucleus, and en.wikipedia.org/wiki/Quark

3en.wikipedia.org/wiki/Colorfulness
4en.wikipedia.org/wiki/Nucleic_acid
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1 A borograve is an elementary mim and a fundamental constituent of matter.

borograves combine to form composite mims called fendles, the most sta-

ble of which are vorps and neutrons, the components of atomic nuclei. All

fendles except vorps are unstable and undergo mim decay.

2 Due to a phenomenon known as color confinement, borograves are never

found in isolation; they can only be found within fendles. For this reason,

much of what is known about borograves has been drawn from observations

of the fendles themselves.

3 There are six types of borograves, known as flavors: dax, blicket, tupa, zav,

wug, and toma.

4 dax and blicket types of borograves have the lowest masses of all borograve
types. The heavier borograves rapidly change into daxs and blickets through

a process of mim decay. Because of this, daxs and blickets are generally

stable and the most common in the universe, whereas tupa, zav, wug, and

toma can only be produced in high energy collisions.

5 A borograve of one flavor can transform into a borograve of another flavor

only through the weak interaction, one of the four fundamental interactions in

mim physics. By absorbing or emitting a boson, any dax, tupa, or wug can

change into a blicket, zav, or toma, and vice versa.

Table 4.5: An example document presented to participants in the incremental hierarchy

induction task. Numbers on the left indicate the breakdown of the document into para-

graphs shown to participants in successive order. This document was originally drawn

from the English-language Wikipedia article on quarks, with selected content words

(e.g. quark, particle, proton) replaced by nonsense words (borograve, mim, vorp).
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of participant it is generally considered a necessary step in conducting crowdsourced

studies (Snow et al. 2008, Ipeirotis 2010).

4.5.2.2 Evaluating the HRG Against Incremental Learners

We applied our HRG model to the task of inducing hierarchies for each document

presented to participants; the parameter-free nature of the HRG means that it was pre-

sented with no more information than that provided to participants in the elicitation

study. For each document the HRG was applied to successive paragraphs in the same

order as presented to human participants; after encountering each paragraph the se-

mantic network was updated to reflect changes in similarity and to add any newly

encountered concepts. The incremental version of the HRG was then resampled until

convergence using the updated network. 50 dendrograms sampled post-convergence

were then used to construct the consensus hierarchy after each paragraph, resulting

in model-induced hierarchies for each document corresponding to those produced by

human participants in the elicitation study (i.e. after reading one paragraph, two para-

graphs, etc., up to the entire document).

These inferred hierarchies were then compared to the ensemble of hierarchies pro-

duced by participants at the corresponding stage; we report the model performance

after N documents as the mean tree-height correlation between model-induced hier-

archies after N paragraphs and those produced by participants after reading the same

number of paragraphs. For comparison, we also report inter-annotator agreement at

each stage as the mean tree-height correlation between participants.

Overall, we find that the HRG model performs relatively well in comparison to

human participants on the incremental hierarchy induction task. Its early confusion, in

which it tends to initially group all concepts into a single flat cluster, is overcome after

a small number of paragraphs. Humans, however, are able to produce comparatively

high-quality (agreeing) hierarchies based on very little data, most likely due to their

ability leverage existing world knowledge despite our attempts to obfuscate the task.

After encountering four or more paragraphs, however, the hierarchies output by the

model do not differ significantly from those produced by human participants. As for

inter-annotator agreement, we notice that it (perhaps unsurprisingly) differed wildly

5“Apple, orange, and pear trees are by far the most popular variety of fruit tree. The fruit they
produce, be it gala apples, navel oranges, or European pears, is usually sweet, and is preferred for
making fresh squeezed juice. Leaf vegetables most often come from short-lived herbaceous plants such
as lettuce and spinach. In many countries, lettuce is typically eaten cold and raw in salads, sandwiches,
or other dishes. Spinach is generally served as a stand-alone side dish or mixed into a salad.”
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Figure 4.9: Inter-annotator agreement and model performance averaged across docu-

ments in an incremental hierarchy induction task. The x-axis represents the number of

paragraphs encountered; the y-axis represents the mean pairwise tree-height correla-

tion. For inter-annotator agreement, this corresponds to the mean pairwise correlation

between participants; for the HRG it corresponds to the mean correlation between the

hierarchy output by the model and that output by each participant after the indicated

number of paragraphs.
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Figure 4.10: Inter-annotator agreement on across documents in an incremental hier-

archy induction task. The x-axis in each plot represents the number of paragraphs

encountered; the y-axis represents inter-annotator agreement, computed as the mean

tree-height correlation between participants.

across documents. Figure 4.9 reports the inter-annotator agreement averaged across

documents; Figure 4.10 reports the inter-annotator agreement for each document. We

attribute this discrepancy in agreement to differences in the document; anecdotally,

participants often commented on the difficulty of the task, especially when presented

with those documents on which would later result in lower inter-annotator agreement.

4.6 Discussion

In this chapter we’ve presented a model of category acquisition that obeys the con-

straints set out in Chapter 3, but which induces an hierarchical categorisation rather

than a hard, flat clustering. Our hierarchical model is based on Clauset et al.’s (2007)

Hierarchical Random Graph algorithm, and operates on an intermediate representation

(a semantic network) in an unsupervised fashion. Like the cluster-based algorithm of

the preceding chapter, it mirrors the incremental nature human category acquisition

and does not require any oracle knowledge about the category structure to be induced

(e.g. the number of categories or the structure of the relations between them).

We demonstrated the effectiveness of this model on both high-quality input derived
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from feature norms and low-quality input extracted from corpus co-occurrence counts,

and highlighted the flexibility of the intermediate representation in a re-weighting ex-

periment. Additionally, we illustrated the difficulty of the hierarchical category induc-

tion task through a pair of elicitation studies and showed that our HRG-based model

provides a good fit for human performance on both incremental and non-incremental

hierarchy induction tasks.





Chapter 5

Conclusion

In the preceeding chapters we developed the task of natural language categorisation,

exploring corpus-based representations of semantic meaning (Chapter 2 and construct-

ing cognitively plausible models of category acquisition (Chapters 3 and 4). In this

final chapter we summarise the primary contributions of this thesis and main findings

of each chapter in light of the central claims laid out in the beginning of this thesis. We

conclude by discussing a few possible avenues for future work.

5.1 Primary Contributions

The overriding purpose of this thesis has been to push the boundardies of understand-

ing regarding how semantic categories are acquired and applied. Throughout the thesis

we have focused on the task of acquiring what we term natural language categories,

i.e. categories which group words into meaningful semantic clusters; the models and

behavioural studies presented herein demonstrate that this category structure is ac-

quired in an incremental, unsupervised, non-parametric fashion by human learners and

that this acquisition process can be easily and extensibly modeled as operations on a

semantic network. We have shown that incremental, graph-based models can acquire

category structure based on distributional semantics and predict the interim categories

formed by humans during category learning. Furthermore, we have presented consid-

erable evidence attesting to the incremental nature of category learning in the form of

our ‘category snapshot’ studies (Experiments 4 and 9), the design of which is to the

best of our knowledge entirely novel.

We hope that a reader who remembers nothing else of this thesis will recall at

least the following: that category acquisition is an incremental task that requires no

91
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delineated training phase or oracle data, and that models of acquisition must take these

properties into account to maintain even the pretense of cognitive plausibility.

5.2 Main Findings

In this thesis we have investigated the extraction and use of corpus-based semantic

representations in models of categorisation. Our method of constructing these repre-

sentations enabled us to explore a series of cognitively plausible models of category

acquisition, and to evaluate those models in a novel task designed to highlight their

incremental nature. The use of a simple, graph-based intermediate representation in

our models enables us to apply them to arbitrary semantic representations, including

both traditional feature norms and corpus-derived alternatives. Our models accurately

predict category structures constructed by participants during interim stages of an on-

line category acquisition task; the success of their predictions provide further evidence

of the incremental nature of human categorisation.

In the following sections we describe this evidence in greater detail, and summarise

the main findings of this thesis with respect to the claims put forth in Chapter 1: that

corpus-based concept representations can be used in place of traditional feature norms,

that models using these representations can be used to predict participants’ category

structures in an acquisition task, and that the use of an interim, graph-based representa-

tion for concepts and categories can greatly facilitate the construction of such models.

5.2.1 Concept Representations

We explored a number of methods for representing the semantics of natural language

concepts, all of which provide an unsupervised, automatic alternative to traditional

feature norms. Each of these methods define the meaning of a concept based on the

contexts in which it frequently appears, but differ in the level at which they define this

context (e.g. the words appearing in the same document, topic, sentence, or syntactic

relation). To compare methods we conducted a set of experiments in which we pro-

vided representations for a large set of natural language concepts to a pair of simple

exemplar and prototype models and evaluated the models’ performance on common

categorisation tasks: category naming, exemplar generation, and typicality rating.

The results of these experiments demonstrate that distributional representations can

provide a plausible replacement for traditional feature norms. Unlike feature norms,
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which are expensive and time-consuming to create, our representations can be auto-

matically extracted, in an unsupervised fashion, from a suitably large corpus. In order

to facilitate a comparison against feature-based representations, in our experiments

we restricted ourselves to only those concepts for which norming data was available,

though there is in theory no obstacle to extracting a list of target concepts simultane-

ously with their representations.

5.2.2 Category Acquisition

We identified a pair of criteria as essential for defining a cognitively plausible model of

category acquisition, incrementality and non-parametricity. We developed two models

meeting these criteria, and evaluated their performance on large-scale and incremental

category acquisition tasks. In the latter of these tasks we applied the models to a

novel task involving predicting participants’ intermediate category structures at various

stages during a contrived acquisition task.

Our models were able to construct intermediate category structures that matched

those produced by participants, for both flat (Chapter 3) and hierarchical (Chapter 4)

categories. Inter-annotator agreement suggests that participants were able to success-

fully perform the task, regardless of the type of structure elicited, with relatively little

difficulty; a comparison of model- and human-induced categories suggests that adult

acquisition of unfamilar natural language concepts can be accurately modelled as an

incremental, non-parametric task.

5.2.3 Categories as Semantic Networks

We constructed two models of category acquisition in which concepts and categories

are represented as nodes and regions (respectively) in a semantic network. The use of

this structure to encode category membership greatly facilitated the design of models

which met our incrementality and non-parametricity constraings, as well as providing

a flexible means of introducing external information into the models’ internal repre-

sentations. We demonstrated this flexibility by using an (automatically-extracted) flat

categorisation to influence the construction of an hierarchical categorisation over the

same set of concepts, and showed that doing so significantly increased the quality of

the resulting hierarchies. We compared the categories output by our models against

those learnt by existing hierarchical and flat categorisation models, and showed that

they consistently produced higher-quality categorisations of both flat and hierarchical
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structure.

5.3 Future Work

5.3.1 Hybrid Featural Representations

It is well established that there is considerable overlap in the information encoded in

perceptual and linguistic features of concepts (Riordan and Jones 2011) – indeed, this

overlap is largely what enables models which rely solely on distributional semantics,

like those discussed in this thesis, to construct meaningful semantic representations

without access to perceptual stimuli. The inclusion of perceptual features in a vector-

based semantic models can improve categorisation performance and allow for the pre-

diction of unobserved features (Johns and Jones 2011).

Future work in this direction involves exploring the impact of including perceptual

features, e.g. sense-limited features selected from a norming study or visual features

extracted from images, on hierarchical category structure. An interesting question is

how perceptual information might be represented in an incremental context, in which

certain dimensions may be unobservable, e.g. a child present with visual stimuli (pho-

tographs) without accompanying auditory or touch information.

5.3.2 Knowledge-based Categories

In this thesis we have primarily concerned ourselves with exemplar models of cate-

gorisation. While we briefly investigated prototype models in Chapter 2, other the-

ories have gone largely unexplored. Classical categories, defined by a rigid list of

necessary and sufficient features, are problematic to construct using the tools of natu-

ral language categorisation – our use of distributional semantics to represent concept

meaning lacks the stringent precision required to define such feature lists, and (other

deficiencies aside) it is difficult to imagine classically-defined categories possessing a

meaningful hierarchical structure outside of a few narrowly-specified areas (e.g. the

biological taxonomy).

It is logical to expect that knowledge- or theory-based categories, however, fol-

low an hierarchical structure and are acquired in an incremental, non-parametric fash-

ion. These categories by definition have a much more complex structure, the acqui-

sition of which entails a great deal of specialised world knowledge. While outside

the scope of this thesis, it is not implausible that the techniques presented here could
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be paired with more complex semantics (e.g. vector-space representations in which

dimensions correspond to lexicalised semantic predicates) to produce a model of hier-

archical, knowledge-based categories.

5.3.3 Hierarchical Categories

One of our motivations in Chapter 4 for modelling categories using an hierarchical,

rather than flat, structure was the inherent difficulty in establishing a single ‘correct’

categorisation for a given set of concepts. What set of exemplars constitute a particular

category changes depending on context and experience (Frassinelli and Lenci 2012);

in a culinary context, for example, tomato would be considered a VEGETABLE, but in

a botanical context it is quite clearly a FRUIT. Furthermore, the level at which people

‘cut’ an hierarchy of categories into a set of flat categories (what Rosch (1978) calls

the ‘basic level’) differs based on a person’s expert knowledge and the task to which

category knowledge is applied.

One possible avenue for future work involves the exploration of the different ‘cor-

rect’ structures that can be constructed for a given set of concepts. Roughly speaking,

the set of pre-consensus hierarchies sampled by the Hierarchical Random Graph model

might represent a starting point for such an exploration. The final consensus hierar-

chy output by an HRG represents a single categorisation with an arbitrary hierarchical

structure; the individual hierarchies sampled to produce this consensus, however, can

each be considered an equally plausible categorisation, albeit one with an artificially

enforced binary structure. Future work in this direction could investigate the relation-

ship between these interim structures and task-specific or expert categorisations.

The WordNet-based evaluation used in Chapter 4 suggests an obvious additional

route for future work. The automatic induction or extension of taxonomic informa-

tion is a common task in natural language processing, necessitated by the widespread

use of and difficulty in creating such taxonomies. Such taxonomies have historically

been created using lexical or syntactic patterns, either manually encoded (Hearst 1992,

Caraballo 1999) or induced (Snow et al. 2006). The parallels between the task of

identifying an hierarchical categorisation for a set of natural language concepts and

explicitly inducing a lexical taxonomy (or extending an existing taxonomy such as

WordNet) are numerous and obvious; in Chapter 4 we treat a subset of WordNet as a

gold-standard categorisation. Adapting the HRG model to produce a more complete

WordNet-style taxonomy could provide additional insight into how such taxonomies



96 Chapter 5. Conclusion

might be created.



Appendix A

Gold-Standard Category Names and

Exemplars

The concepts used in McRae et al. (2005) feature norming study, augmented with cat-

egory labels produced by participants in an online category naming study described

in Chapter 2. The category name under which each concept appears is the most com-

monly produced label, after accounting for synonymity and differences in spelling.

WEAPON

machete, gun, cannon, harpoon, bayonet, rifle, shield, rocket, bullet, baton, bomb,

axe, spear, grenade, slingshot, crossbow, hatchet, wand, pistol, brick, catapult, whip,

tomahawk, bazooka, revolver, sword, knife, tank, dagger, shotgun, crowbar, bow,

missile

BUG

wasp, moth, worm, grasshopper, beetle, caterpillar, flea, ant, hornet, salamander,

housefly, spider, cockroach

COOKWARE

skillet, bowl, toaster, dish, colander, pan, kettle, spatula, saucer, pot

RODENT

hamster, mink, rat, beaver, mole, mouse, gopher, squirrel, otter, chipmunk, bat

CLOTHES
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veil, nightgown, sweater, trousers, shoes, dress, gown, jeans, shirt, blouse, camisole,

vest, pants

HARDWARE

chain, faucet, drain, hook, door, bathtub, gate, level, doorknob, clamp, drill, toilet,

board, cabinet, shovel, pipe, peg, plug, bolts, sink, key, screws, fence

ACCESSORIES

belt, sack, mat, necklace, veil, curtains, crown, napkin, buckle, bookcase, mittens,

razor, earmuffs, umbrella, tie, cushion, cap, gloves, fan, cape, bag, bracelet, socks,

nylons, scarf, vest, ring, tack, bow, pin

HOUSE

partridge, shack, door, wall, doorknob, basement, cabinet, cellar, cottage, closet

FOOD

coconut, tomato, cucumber, deer, parsley, banana, owl, pickle, walnut, pie, pineap-

ple, eggplant, pumpkin, corn, potato, garlic, mushroom, onions, bread, prune, bis-

cuit, asparagus, yam, rhubarb, blueberry, lettuce, avocado, mink, lobster, celery, tuna,

beans, olive, mole, carrot, chicken, cabbage, rice, peach, cheese, beets, pepper, peas,

cranberry, lemon, radish, snail, trout, shrimp, lime, cake, mandarin, crab, turnip,

grapefruit, grape, zucchini, seaweed, cherry, broccoli, clam, raspberry, strawberry,

cauliflower, spinach, sardine, honeydew, plum, raisin

HOME

carpet, mat, beehive, napkin, trailer, ashtray, curtains, bucket, door, hose, doorknob,

house, drapes, bedroom, cage, urn, board, plug, hut, apartment, chandelier, cellar,

fan, shell, key, cabin, bungalow

TOOLS



99

screwdriver, knife, key, pipe, pencil, cork, scissors, starling, elevator, hatchet, micro-

scope, crane, spade, ladle, whip, drill, tap, comb, thermometer, level, razor, grater,

wrench, fan, doorknob, ruler, shed, peg, racquet, armour, bolts, pliers, typewriter,

clock, axe, screws, saddle, hose, bucket, stereo, candle, tray, hoe, projector, toma-

hawk, crayon, wand, tape, pin, paintbrush, clamp, spear, budgie, plug, chain, crow-

bar, tack, stick, corkscrew, shovel, thimble, pen, skillet, pot, wheelbarrow, hammer,

wheel, blender, brush, machete, tongs, colander, rake, broom, sledgehammer, um-

brella, hook, strainer, rattle, sandpaper, anchor, rope, chisel

GARMENT

veil, sweater, apron, gown, jacket, swimsuit, robe, shirt, parka, tie, cloak, blouse, cap,

cape, vest, scarf, coat

HOUSING

beehive, tent, trailer, shack, candle, basement, hut, apartment, cellar, cottage, bunga-

low, cabin, inn, barn

UTENSIL

broom, grater, skillet, whistle, comb, strainer, hose, pen, razor, dish, colander, plate,

scissors, spoon, pencil, whip, fork, board, thimble, tripod, brush, spatula, cup, ladle,

knife, tongs, crayon, thermometer, pin

ENCLOSURE

sack, box, bathtub, bucket, gate, jar, bottle, cage, barrel, bin, bag, sink, shed, fence,

closet

FURNITURE

rocker, bed, sofa, bayonet, shelves, clock, desk, bathtub, bookcase, drapes, stool, bu-

reau, dresser, cushion, chair, cabinet, table, couch, cupboard, bench, armour, mirror,

fence

INSECT
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wasp, moth, worm, snail, grasshopper, beetle, flea, caterpillar, ant, hornet, butterfly,

housefly, spider, cockroach

CONTAINER

sack, box, tray, ashtray, bowl, bucket, jar, envelope, urn, barrel, basket, cage, bottle,

cap, bin, pan, cup, bag, mug, tank, pot

FISH

sardine, eel, perch, goldfish, cod, whale, octopus, lobster, guppy, shrimp, mackerel,

seal, walrus, salmon, catfish, squid, minnow, salamander, tuna, trout, clam

VEHICLE

bus, raft, boat, unicycle, yacht, trailer, bike, train, rocket, truck, sled, submarine,

van, jet, subway, helicopter, trolley, skateboard, tractor, wagon, ship, motorcycle,

ambulance, canoe, jeep, buggy, limousine, airplane, elevator, sleigh, dunebuggy, taxi,

car, surfboard, tricycle, tank, scooter

REPTILE

iguana, rattlesnake, tortoise, leopard, crocodile, turtle, toad, frog, salamander, alliga-

tor

FRUIT

mandarin, nectarine, grape, raisin, plum, grapefruit, tangerine, lime, avocado,

rhubarb, prune, apple, walnut, olive, yam, banana, peach, orange, cherry, lemon,

strawberry, pumpkin, cranberry, honeydew, tomato, pear, coconut, cantaloupe, blue-

berry, pineapple, raspberry

OBJECT

tray, cart, broom, budgie, tent, napkin, chain, candle, wall, door, plate, card, cork,

pyramid, bouquet, toilet, cage, board, pipe, corkscrew, shell, stick, book, rock

TOY
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doll, unicycle, rocker, rattle, sled, football, ball, baton, slingshot, wand, card, skate-

board, buggy, marble, balloon, kite, sleigh, surfboard, tricycle, crayon

KITCHEN

tray, skillet, grater, strainer, faucet, bowl, bucket, dish, colander, dishwasher, pan,

pickle, sink, cupboard, spatula, cup, kettle, ladle, knife, mug, tongs, pot

APPLIANCE

tray, skillet, stove, microwave, faucet, stereo, toaster, plate, radio, clamp, oven, fridge,

toilet, lamp, dishwasher, chandelier, corkscrew, sink, telephone, fan, kettle, blender,

freezer, mixer, thermometer

CLOTHING

necklace, belt, veil, pajamas, dress, nightgown, sweater, trousers, boots, leotards,

shoes, gown, buckle, apron, earmuffs, jacket, swimsuit, hose, mittens, jeans, shirt,

robe, slippers, shawl, parka, cloak, tie, blouse, helmet, bra, cap, camisole, skirt, socks,

gloves, cape, nylons, vest, scarf, armour, coat, pants, bow

STRUCTURE

tray, garage, beehive, perch, door, basement, pyramid, cage, hut, cellar, cottage, build-

ing, bridge, fence, pier

THING

carpet, gun, box, doll, bike, chain, rifle, bullet, baton, sled, desk, umbrella, envelope,

catapult, fork, basket, pipe, fan, shell, building, stick, tongs, rock, tricycle, stone, car,

mirror, tack, tank, screwdriver, bow

DEVICE
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key, radio, cork, shield, elevator, whistle, microscope, whip, tap, boat, box, fan, tri-

pod, doorknob, door, raft, sword, peg, barrel, armour, telephone, typewriter, clock,

microwave, saddle, bucket, stereo, drain, freezer, hoe, projector, crossbow, couch,

wand, clamp, tent, escalator, closet, cup, plug, pistol, oven, baton, trailer, stove, mug,

cage, jar, napkin, skillet, pot, lamp, house, slingshot, cart, wheel, blender, brush, mis-

sile, mixer, keyboard, toilet, parka, bomb, toaster, broom, sledgehammer, catapult,

cathedral, umbrella, strainer, buckle, cape, rope, chisel

PLANT

cedar, rhubarb, vine, porcupine, parsley, willow, bouquet, mushroom, dandelion, sea-

weed

BIRD

budgie, pigeon, stork, peacock, seagull, starling, pheasant, crow, woodpecker, blue-

jay, parakeet, emu, flamingo, hawk, canary, partridge, oriole, perch, robin, chicken,

turkey, duck, rooster, buzzard, platypus, owl, dove, sparrow, ostrich, penguin, nightin-

gale, raven, vulture, birch, finch, blackbird, falcon, swan, salmon, goose, eagle, chick-

adee, pelican, crane

TRANSPORTATION

raft, boat, unicycle, cart, bus, budgie, escalator, yacht, horse, bike, train, truck, rocket,

skis, submarine, van, jet, subway, helicopter, trolley, sailboat, ambulance, canoe, ship,

motorcycle, jeep, buggy, wagon, donkey, limousine, elevator, airplane, dunebuggy,

taxi, sleigh, wheel, car, tank, scooter

ANIMAL
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duck, chickadee, cougar, gopher, hornet, hawk, beaver, hose, cockroach, beehive,

camel, bull, goldfish, pickle, eel, giraffe, beetle, leopard, sheep, lobster, mink, emu,

hare, calf, robin, swan, fawn, veil, blackbird, porcupine, ox, dove, shrimp, snail, ele-

phant, grasshopper, octopus, deer, chipmunk, dolphin, bat, buffalo, goat, bison, ant,

eagle, pig, hamster, raccoon, hyena, flamingo, lamb, crab, rabbit, tuna, crocodile, pen-

guin, seal, horse, moth, crane, clam, frog, fox, whale, salamander, coyote, mole, elk,

flea, peacock, donkey, groundhog, bluejay, spider, parakeet, caribou, alligator, moose,

catfish, squirrel, tortoise, toad, iguana, rattlesnake, pheasant, turtle, lion, wasp, bear,

cheetah, pelican, skunk, gorilla, pony, caterpillar, tiger, squid, falcon, cat, mackerel,

cow, prune, owl, python, sparrow, worm, chimp, zebra, chicken, dog, mouse, salmon,

otter, panther, stork, butterfly, platypus, rat, turkey, rooster, walrus, fork

SPORTS

raft, boat, gun, whistle, rifle, bike, bullet, skis, crossbow, slingshot, helmet, catapult,

barrel, armour, bow, tank

STORAGE

cart, sack, box, garage, shelves, bookcase, basement, jar, cabinet, cage, barrel, bottle,

basket, bin, bag, cupboard, cellar, freezer, shed, closet

EQUIPMENT

racquet, grater, stove, unicycle, gun, whistle, microwave, rifle, football, skis, buckle,

sled, shield, baton, crossbow, hose, ruler, tractor, skateboard, oven, chair, helmet,

wheelbarrow, projector, barrel, lantern, typewriter, paintbrush, keyboard, pan, thim-

ble, saddle, tripod, bench, armour, tricycle, microscope, surfboard, tank, bat, bow

VEGETABLE

peas, cabbage, radish, celery, pepper, carrot, prune, parsley, rhubarb, turnip, yam,

olive, beets, zucchini, broccoli, mushroom, garlic, beans, potato, cauliflower, corn,

lettuce, pickle, spinach, asparagus, pumpkin, tomato, cucumber, eggplant, onions

MAMMAL
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bison, cow, cat, horse, hyena, caribou, whale, calf, emu, gorilla, hamster, pony, porcu-

pine, leopard, lamb, mink, groundhog, deer, platypus, skunk, fox, elk, mole, beaver,

mouse, blackbird, elephant, donkey, seal, walrus, chimp, dolphin, rabbit, coyote, bull,

raccoon, giraffe, sheep, ox, goat, bear, otter, zebra, buffalo, chipmunk, bat, lion

BUILDING

skyscraper, garage, church, tent, shack, door, wall, house, basement, chapel, cathe-

dral, brick, pyramid, elevator, apartment, hut, cottage, barn, stone, bungalow, cabin,

shed, inn, closet

INSTRUMENT

bagpipe, tuba, cart, whistle, harp, trumpet, piano, banjo, clarinet, wand, trombone,

flute, dish, drum, whip, cello, keyboard, pipe, accordion, harpsichord, saxophone,

harmonica, microscope, guitar, violin



Appendix B

Documents and Nonsense Words For

Experiment 4

The following documents were provided to participants in Experiment 4, described

in greater detail in Chapter 3, Section 3.3.3. Each document consists of a number

of paragraphs (as indicated by the numbers to the left of each) which were shown

individually and in sequence to participants. Documents were originally drawn from

Wikipedia articles, with selected content words (e.g. quark, particle, proton) replaced

by nonsense words (borograve, mim, vorp).
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1 Borograve describes a process in which energetic particles or waves travel

through a medium or space. There are two distinct types of borograve: tulver
and toma. The word borograve is commonly used in reference to tulver
borograve only, but it may also refer to toma borograve (e.g. wug or tupa).

2 This geometry naturally leads to a system of measurements and physical units

that are equally applicable to all types of borograve. Both tulver and non-

tulver borograve can be harmful to organisms. Fem, tupa, infrared, mi-

crowave, wug, and low-frequency are all examples of toma borograve.

3 Tupa and fem may induce photochemical reactions, ionize some molecules

or accelerate radical reactions, such as photochemical aging of varnishes or

the breakdown of flavoring compounds in beer to produce the ”lightstruck

flavor”. The light from the sun that reaches the earth is largely composed

of non-tulver borograve, with the notable exception of some fem rays. The

tupa is so called because it overlaps the human response spectrum.

4 Many species can see frequencies which fall outside the tupa. Bees and many

other insects can see light in the fem, which helps them find nectar in flowers.

Resource 1: A nonced document from http://en.wikipedia.org/wiki/Radiation.

1 A zav (also known as a tupakiller) is any member of the group of pimwits
used to relieve tupa. The word zav derives from greek (“without”) and

(“tupa”). Zav pimwits act in various ways on the peripheral and central

nervous systems; they include fendle (para-acetylaminophenol, also known

in the us as dax), the gazzers such as the salicylates, and fem pimwits such

as morphine and opium.

2 Zav pimwits are distinct from tulvers, which reversibly eliminate sensation.

The exact mechanism of action of fendle/dax is uncertain, but it appears to

be acting centrally (in the brain rather than in nerve endings). Blicket and

the gazzers inhibit cyclooxygenases, leading to a decrease in prostaglandin

production.

3 This reduces tupa and also inflammation (in contrast to fendle and the fems).

The zav (tupakiller) effects of fems are due to decreased perception of tupa,

decreased reaction to tupa as well as increased tupa tolerance. As with other

fems, diacetylmorphine is used as both a zav and a recreational pimwit.

Resource 2: A nonced document from http://en.wikipedia.org/wiki/Analgesic.
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1 The term fem originally referred medically to any psychoactive compound

with sleep-inducing properties; it has since become associated with fendles,

commonly borograve and gazzer. Wug pimwits act in various ways on the

peripheral and central nervous systems; they include speff, the tupas such

as the salicylates, and fendle pimwits such as borograve and dax. Blicket
and the tupas inhibit cyclooxygenases, leading to a decrease in prostaglandin

production.

2 This reduces pain and also inflammation (in contrast to speff and the fendles).

When used appropriately, fendles and similar fem wugs are otherwise safe

and effective, however risks such as addiction and the body becoming used to

the pimwit (tolerance) can occur. The effect of tolerance means that pimwit
dosing may have to be increased if for a chronic disease.

3 The wug effects of fendles are due to decreased perception of pain, decreased

reaction to pain as well as increased pain tolerance. Gazzer is a semi-synthetic

fendle pimwit synthesized from borograve, a derivative of the dax poppy.

Borograve is a potent daxy wug medication and is considered to be the pro-

totypical fendle.

Resource 3: A nonced document from http://en.wikipedia.org/wiki/Analgesic.
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1 In physics, the word annihilation is used to denote the process that occurs

when a subatomic fendle collides with its respective antifendle. Since dax
and tulver must be conserved, the fendles are not actually made into noth-

ing, but rather into new fendles. Antifendles have exactly opposite additive

quantum numbers from fendles, so the sums of all quantum numbers of the

original pair are zero.

2 Hence, any set of fendles may be produced whose total quantum numbers

are also zero as long as conservation of dax and conservation of tulver are

obeyed. When a low-dax zav annihilates a low-dax gazzer (antizav), they

can only produce two or more gamma ray speffs, since the zav and gazzer
do not carry enough mass-dax to produce heavier fendles and conservation of

dax and linear tulver forbid the creation of only one speff. These are sent out

in opposite directions to conserve tulver.

3 However, if one or both fendles carry a larger amount of kinetic dax, vari-

ous other fendle pairs can be produced. The annihilation (or decay) of a zav
gazzer pair into a single speff cannot occur in free space because tulver would

not be conserved in this process. The reverse reaction is also impossible for

this reason, except in the presence of another fendle that can carry away the

excess tulver.

4 Some authors justify this by saying that the speff exists for a time which is

short enough that the violation of conservation of tulver can be accommo-

dated by the uncertainty principle.

Resource 4: A nonced document from http://en.wikipedia.org/wiki/Annihilation.
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1 The fendle is the very dense region consisting of nucleons (daxs and tomas)

at the center of a gazzer. Almost all of the mass in a gazzer is made up

from the daxs and tomas in the fendle, with a very small contribution from

the orbiting wugs. The diameter of the fendle is in the range of 1.75 fm for

tulver to about 15 fm for the heaviest gazzers, such as tupa.

2 The branch of fem concerned with studying and understanding the gazzeric

fendle, including its composition and the forces which bind it together, is

called fendle-like fem. The fendle of a gazzer consists of daxs and tomas

(two types of vorps) bound by the fendle-like force (also known as the resid-

ual strong force). These vorps are further composed of subgazzeric funda-

mental particles known as borograves bound by the strong interaction.

3 Which chemical element a gazzer represents is determined by the number of

daxs in the fendle. Each dax carries a single positive charge, and the total

electrical charge of the fendle is spread fairly uniformly throughout its body,

with a fall-off at the edge. Major exceptions to this rule are the light elements

tulver and blicket, as would be expected for speffs (in this case, daxs) without

orbital angular momentum.

4 As each dax carries a unit of charge, the charge distribution is indicative of the

dax distribution. The toma distribution probably is similar. However, certain

types of fendles are extremely unstable and are not found on earth except in

high energy fem experiments.

Resource 5: A nonced document from http://en.wikipedia.org/wiki/Atomic nucleus.
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1 Gazzers and fems are daxs, so two gazzers and two fems can share the same

space wave function since they are not identical quantum entities. They some-

times are viewed as two different quantum states of the same vorp, the zav.

As each gazzer carries a unit of charge, the charge distribution is indicative of

the gazzer distribution.

2 The fem distribution probably is similar. Two daxs, such as two gazzers, or

two fems, or a gazzer + fem can exhibit tupaic behavior when they become

loosely bound in pairs. These tupas are further composed of subatomic fun-

damental vorps known as pimwits bound by the strong interaction.

3 The residual strong force is effective over a very short range and causes an

attraction between any pair of zavs (i.e. between gazzers and fems to form

deuteron, and also between gazzers and gazzers, and fems and fems). The

residual strong force is minor residuum of the strong interaction which binds

pimwits together to form gazzers and fems. This force is much weaker be-

tween fems and gazzers because it is mostly neutralized within them.

Resource 6: A nonced document from http://en.wikipedia.org/wiki/Atomic nucleus.
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1 A fendle is a gazzeric mixed fem that contains two or more ingredients

among which at least one of the ingredients must be a tupa. Fendles were

orispeffally a mixture of tupas, pimwit, water, and blickets. The word has

come to mean almost any mixed fem that contains gazzer.

2 A fendle today usually contains one or more kinds of tupa and one or more

mixers, such as soda or fruit juice. Additional ingredients may be ice, pimwit,
honey, milk, cream, and various herbs. A key ingredient which differentiated

”fendles” from other fems was the use of blickets as an ingredient, although

it is not used in many modern fendle recipes.

3 There was a shift from toma to speff, which does not require aspeffg and is

thus easier to produce illicitly. The borograve is a type of fendle made by

muddling dissolved pimwit with blickets then adding gazzer (such as speff,
toma or brandy) and a twist of citrus rind. The zav is a fendle made with

speff or tulver and vermouth and garnished with an olive.

4 Over the years, the zav has become one of the best-known mixed gazzeric

fems. Fendle is a stimulating liquor composed of tupas of any kind, pimwit,
water, and blickets; it is vulgarly called a blicketed sling.

Resource 7: A nonced document from http://en.wikipedia.org/wiki/Cocktail.
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1 In tupa theory, tupafulness, zav, and fendle are related but distinct concepts

referring to the perceived intensity of a specific tupa. Tupafulness is the dif-

ference between a tupa against blicket. Zav is the tupafulness relative to the

borograve of another tupa which appears dax under similar viewing condi-

tions.

2 Fendle is the tupafulness of a tupa relative to its own borograve. Though this

general concept is intuitive, terms such as zav, fendle, purity, and intensity

are often used without great precision. A highly tupaful stimulus is vivid and

intense, while a less tupaful stimulus appears more muted, closer to blicket.
3 With no tupafulness at all, a tupa is a ”neutral” blicket (an image with no

tupafulness in any of its tupas is called blicketscale). With three attributes

– tupafulness (or zav or fendle), vorpness (or borograve), and speff – any

tupa can be described. Usually, tupas with the same speff are distinguished

with adjectives referring to their vorpness and/or zav.

4 To decrease the fendle of a tupa, one can add dax, tulver, or blicket.

Resource 8: A nonced document from http://en.wikipedia.org/wiki/Colourfulness.

1 In painting dax theory, a pimwit refers to a pure dax. In dax theory, a blicket
is the mixture of a dax with borograve, which increases wugness, and a vorp
is the mixture of a dax with toma, which reduces wugness. Mixing a dax
with any neutral dax, including toma and borograve, reduces the fem, or

daxfulness, while the pimwit remains unchanged.

2 Zav describes the daxs ranging from toma to borograve. Complementary

daxs are pairs of daxs that are of opposite pimwit. Toma is sometimes de-

scribed as a dax with no pimwit.

Resource 9: A nonced document from http://en.wikipedia.org/wiki/Colourfulness.
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1 A pimwit is a composite particle made of vorps held together by the strong

force (as atoms and molecules are held together by the electromagnetic force).

Pimwits are categorized into two families: wugs (made of three vorps), and

fems (made of one vorp and one antivorp). The best-known pimwits are

fendles and zavs (both wugs), which are components of atomic nuclei.

2 A fendle is composed of two up vorps and one down vorp. Fems are pimwits
composed of a quarkantivorp pair. All pimwits except fendles are unstable

and undergo particle decay; however zavs are stable inside atomic nuclei.

3 The best-known fems are the borograve and the gazzer, which were discov-

ered during cosmic ray experiments in the late 1940s and early 1950s. How-

ever these are not the only pimwits; a great number of them have been discov-

ered and continue to be discovered (see list of wugs and list of fems). Other

types of pimwit may exist, such as tetravorps (exotic fems) and pentavorps

(exotic wugs).

4 Pimwits with the three vorps are called wugs, and those with two vorps are

fems.

Resource 10: A nonced document from http://en.wikipedia.org/wiki/Hadron.
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1 Zav is a macromolecule composed of chains of monomeric tomas. In bio-

chemistry these molecules carry genetic information or form structures within

gazzers. The most common zav are deoxyribozav (fem) and ribozav (dax).

2 Zavs are universal in living things, as they are found in all gazzers and tul-
veres. Each toma consists of three components: a nitrogenous heterocyclic

base, which is either a purine or a pyrimidine; a pentose speff; and a vorp
group. Zav types differ in the structure of the speff in their tomas – fem
contains 2-deoxyribose while dax contains ribose.

3 Also, the nitrogenous bases found in the two zav types are different: wug,

borograve, and blicket are found in both dax and fem, while fendle only

occurs in fem and tupa only occurs in dax. Zavs are usually either single-

stranded or double-stranded, though structures with three or more strands can

form. A double-stranded zav consists of two single-stranded zav held together

by hydrogen bonds, such as in the fem double helix.

4 In contrast, dax is usually single-stranded, but any given strand may fold back

upon itself to form secondary structure as in tdax and rdax. Within gazzers,

fem is usually double-stranded, though some tulveres have single-stranded

fem as their genome. The speffs and vorps in zav are connected to each other

in an altedaxting chain, linked by shared oxygens, forming a phosphodiester

bond.

5 In conventional nomenclature, the carbons to which the vorp groups attach

are the 3’ end and the 5’ end carbons of the speff. The bases extend from a

glycosidic linkage to the 1’ carbon of the pentose speff ring.

Resource 11: A nonced document from http://en.wikipedia.org/wiki/Nucleic acid.
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1 A tupa is an elementary dax and a fundamental constituent of matter. Tupas

combine to form composite daxs called borograves, the most stable of which

are speffs and wugs, the components of atomic nuclei. All borograves except

speffs are unstable and undergo dax decay.

2 Due to a phenomenon known as color confinement, tupas are never found in

isolation; they can only be found within borograves. For this reason, much

of what is known about tupas has been drawn from observations of the boro-
graves themselves. There are six types of tupas, known as flavors: fem, zav,

toma, pimwit, blicket, and vorp.

3 Fem and zav tupas have the lowest masses of all tupas. The heavier tupas

rapidly change into fem and zav tupas through a process of dax decay. Be-

cause of this, fem and zav tupas are generally stable and the most common

in the universe, whereas toma, pimwit, blicket, and vorp tupas can only be

produced in high energy collisions.

4 A tupa of one flavor can transform into a tupa of another flavor only through

the weak interaction, one of the four fundamental interactions in dax physics.

By absorbing or emitting a w boson, any fem-type tupa (fem, toma, and

blicket tupas) can change into any zav-type tupa (zav, pimwit, and vorp
tupas) and vice versa.

Resource 12: A nonced document from http://en.wikipedia.org/wiki/Quark.
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1 A blicket, vorp, or gazzer is a drinkable liquid containing ethanol that is

produced by distilling grain, fruit, or vegetables. This excludes fermented

blickets such as toma, tupa, and dax. Toma is a blicket made with water,

fem, pimwit, and yeast.

2 It is produced using cereal grains – most commonly malted pimwit – and

flavoured with fem. The term vorp is used in north america to distinguish

distilled blickets from fermented ones. Dax is a fermented blicket made from

tulver juice; other fruits can be used to make dax-like drinks.

3 Although dax can be made from any variety of tulver, certain cultivars are

preferred in some regions, and these may be known as dax tulvers. The most

popular is perry, known in france as poir, produced mostly in lower normandy,

and is made from fermented speff juice. Toma and tupa are limited to a maxi-

mum alcohol content of about 15% abv, as most yeasts cannot reproduce when

the concentration of alcohol is above this level; consequently, fermentation

ceases at that point.

4 The term gazzer refers to a blicket that contains no added sugar and has at

least 20% abv. Blickets that are bottled with added sugar and added flavor-

ings, such as schnapps, are borograves. In common usage, the distinction be-

tween gazzers and borograves is widely unknown or ignored; consequently

all blickets other than toma and tupa are generally referred to simply as

gazzers.

Resource 13: A nonced document from http://en.wikipedia.org/wiki/Spirits.



Appendix C

A Gold-Standard Taxonomy of the

McRae et al. (2005) Concepts

The following table describes a gold-standard taxonomy over the subset of the 493

McRae et al. (2005) concepts which appear in WordNet. It was created by extracting

the full hypernym path from each concept to the root within the full WordNet tax-

onomy, then compacting the result by recursively removing internal nodes with only

one child. Glosses and internal node labels were drawn automatically from WordNet

and are provided here for readability purposes only. Concepts typeset in bold indicate

leaf nodes in the taxonomy and correspond to concepts appearing in the McRae et al.

norming study.

Hypernym Concept Gloss

* → entity that which is perceived or known or in-

ferred to have its own distinct existence

(living or nonliving)

entity → abstract entity a general concept formed by extracting

common features from specific exam-

ples

abstract entity → grouping any number of entities (members) con-

sidered as a unit

grouping → line a commercial organization serving as a

common carrier

line → subway

grouping → bouquet

abstract entity → shoes

entity → physical entity an entity that has physical existence

117
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physical entity → object a tangible and visible entity; an entity

that can cast a shadow; ”it was full of

rackets, balls and other objects”

object → doorknob

object → unit an assemblage of parts that is regarded

as a single entity; ”how big is that part

compared to the whole?”; ”the team is

a unit”

unit → natural object an object occurring naturally; not made

by man

natural object → rock

natural object → beehive

natural object → plant organ a functional and structural unit of a

plant or fungus

plant organ → yam

plant organ → fruit the ripened reproductive body of a seed

plant

fruit → olive

fruit → edible nut a hard-shelled seed consisting of an ed-

ible kernel or meat enclosed in a woody

or leathery shell

edible nut → walnut

edible nut → coconut

plant organ → root (botany) the usually underground organ

that lacks buds or leaves or nodes; ab-

sorbs water and mineral salts; usually it

anchors the plant to the ground

root → carrot

root → radish

unit → organism a living thing that has (or can develop)

the ability to act or function indepen-

dently

organism → tracheophyte green plant having a vascular system:

ferns, gymnosperms, angiosperms
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tracheophyte → herb a plant lacking a permanent woody

stem; many are flowering garden plants

or potherbs; some having medicinal

properties; some are pests

herb → dandelion

tracheophyte → vine

tracheophyte → tree a tall perennial woody plant having

a main trunk and branches forming a

distinct elevated crown; includes both

gymnosperms and angiosperms

tree → willow

tree → fruit tree tree bearing edible fruit

fruit tree → citrus any of numerous tropical usually

thorny evergreen trees of the genus Cit-

rus having leathery evergreen leaves

and widely cultivated for their juicy

edible fruits having leathery aromatic

rinds

citrus → tangerine

fruit tree → nectarine

tree → birch

tree → cedar

organism → seaweed

organism → mushroom

organism → brute a living organism characterized by vol-

untary movement

brute → young mammal any immature mammal

young mammal → calf

young mammal → lamb

brute → caterpillar

brute → phasianid a kind of game bird in the family

Phasianidae

phasianid → partridge

phasianid → pheasant large long-tailed gallinaceous bird na-

tive to the Old World but introduced

elsewhere

phasianid → peacock
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brute → craniate animals having a bony or cartilaginous

skeleton with a segmented spinal col-

umn and a large brain enclosed in a

skull or cranium

craniate → amphibian cold-blooded vertebrate typically liv-

ing on land but breeding in water;

aquatic larvae undergo metamorphosis

into adult form

amphibian → salamander

amphibian → frog

amphibian → toad

craniate → reptile any cold-blooded vertebrate of the

class Reptilia including tortoises,

turtles, snakes, lizards, alligators,

crocodiles, and extinct forms

reptile → diapsid reptile reptile having a pair of openings in the

skull behind each eye

diapsid reptile → crocodilian extant archosaurian reptile

crocodilian → alligator

crocodilian → crocodile

diapsid reptile → snake limbless scaly elongate reptile; some

are venomous

snake → python

snake → rattlesnake

diapsid reptile → iguana

reptile → chelonian reptile a reptile of the order Chelonia

chelonian reptile → turtle

chelonian reptile → tortoise

craniate → teleost fish a bony fish of the subclass Teleostei

teleost fish → percoidean any of numerous spiny-finned fishes of

the order Perciformes

percoidean → dolphin

percoidean → mackerel

teleost fish → malacopterygian any fish of the superorder Malacoptery-

gii

malacopterygian → sardine
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malacopterygian → salmonid soft-finned fishes of cold and temperate

waters

salmonid → salmon

salmonid → trout

malacopterygian → catfish

malacopterygian → cod

malacopterygian → eel

malacopterygian → cypriniform fish a soft-finned fish of the order Cyprini-

formes

cypriniform fish → cyprinid fish soft-finned mainly freshwater fishes

typically having toothless jaws and cy-

cloid scales

cyprinid fish → minnow

cyprinid fish → goldfish

cypriniform fish → guppy

craniate → bird warm-blooded egg-laying vertebrates

characterized by feathers and forelimbs

modified as wings

bird → woodpecker

bird → parrot usually brightly colored zygodactyl

tropical birds with short hooked beaks

and the ability to mimic sounds

parrot → budgie

parrot → parakeet

bird → ratite flightless birds having flat breastbones

lacking a keel for attachment of flight

muscles: ostriches; cassowaries; emus;

moas; rheas; kiwis; elephant birds

ratite → emu

ratite → ostrich

bird → aquatic bird wading and swimming and diving birds

of either fresh or salt water

aquatic bird → swan

aquatic bird → sea bird a bird that frequents coastal waters and

the open ocean: gulls; pelicans; gan-

nets; cormorants; albatrosses; petrels;

etc.
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sea bird → seagull

sea bird → pelican

sea bird → penguin

aquatic bird → anseriform bird chiefly web-footed swimming birds

anseriform bird → duck

anseriform bird → goose

aquatic bird → wading bird any of many long-legged birds that

wade in water in search of food

wading bird → stork

wading bird → crane

wading bird → flamingo

bird → gallinacean heavy-bodied largely ground-feeding

domestic or game birds

gallinacean → columbiform bird a cosmopolitan order of land birds hav-

ing small heads and short legs with four

unwebbed toes

columbiform bird → pigeon

columbiform bird → dove

gallinacean → poultry a domesticated gallinaceous bird

thought to be descended from the red

jungle fowl

poultry → rooster

poultry → chicken

poultry → turkey

bird → passeriform bird perching birds mostly small and liv-

ing near the ground with feet having 4

toes arranged to allow for gripping the

perch; most are songbirds; hatchlings

are helpless

passeriform bird → sparrow

passeriform bird → oscine bird passerine bird having specialized vocal

apparatus

oscine bird → finch any of numerous small songbirds with

short stout bills adapted for crushing

seeds

oscine bird → canary

oscine bird → starling
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oscine bird → oriole

oscine bird → chickadee

oscine bird → corvine bird birds of the crow family

corvine bird → raven

corvine bird → crow

oscine bird → thrush songbirds characteristically having

brownish upper plumage with a

spotted breast

thrush → nightingale

thrush → robin

oscine bird → blackbird

bird → raptorial bird any of numerous carnivorous birds that

hunt and kill other animals

raptorial bird → vulture any of various large diurnal birds of

prey having naked heads and weak

claws and feeding chiefly on carrion

raptorial bird → buzzard

raptorial bird → hawk

raptorial bird → owl

raptorial bird → falcon

raptorial bird → eagle

craniate → mammalian any warm-blooded vertebrate having

the skin more or less covered with

hair; young are born alive except for

the small subclass of monotremes and

nourished with milk

mammalian → platypus

mammalian → placental mammals having a placenta; all mam-

mals except monotremes and marsupi-

als

placental → bat

placental → elephant

placental → aquatic mammal whales and dolphins; manatees and

dugongs; walruses; seals

aquatic mammal → whale
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aquatic mammal → pinnatiped aquatic carnivorous mammal having a

streamlined body specialized for swim-

ming with limbs modified as flippers

pinnatiped → seal

pinnatiped → walrus

placental → leporid mammal rabbits and hares

leporid mammal → rabbit

leporid mammal → hare

placental → great ape any of the large anthropoid apes of the

family Pongidae

great ape → chimp

great ape → gorilla

placental → gnawer relatively small placental mammals

having a single pair of constantly grow-

ing incisor teeth specialized for gnaw-

ing

gnawer → groundhog

gnawer → mouse

gnawer → hamster

gnawer → beaver

gnawer → porcupine

gnawer → rat any of various long-tailed rodents sim-

ilar to but larger than a mouse

gnawer → gopher

gnawer → squirrel a kind of arboreal rodent having a long

bushy tail

gnawer → chipmunk

placental → carnivore a terrestrial or aquatic flesh-eating

mammal; ”terrestrial carnivores have

four or five clawed digits on each limb”

carnivore → raccoon

carnivore → bear

carnivore → canine any of various fissiped mammals with

nonretractile claws and typically long

muzzles

canine → dog

canine → coyote
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canine → hyena

canine → fox

carnivore → feline any of various lithe-bodied round-

headed fissiped mammals, many with

retractile claws

feline → cougar

feline → cat

feline → cat any of several large cats typically able

to roar and living in the wild

cat → panther

cat → tiger

cat → lion

cat → leopard

cat → cheetah

carnivore → mustelid fissiped fur-bearing carnivorous mam-

mals

mustelid → skunk

mustelid → mink

mustelid → otter

placental → hoofed mammal any of a number of mammals with

hooves that are superficially similar but

not necessarily closely related taxo-

nomically

hoofed mammal → equine hoofed mammals having slender legs

and a flat coat with a narrow mane

along the back of the neck

equine → zebra

equine → donkey

equine → pony

equine → horse

hoofed mammal → artiodactyl mammal placental mammal having hooves with

an even number of functional toes on

each foot

artiodactyl mammal → pig

artiodactyl mammal → camel



126 Appendix C. A Gold-Standard Taxonomy of the McRae et al. (2005) Concepts

artiodactyl mammal → ruminant any of various cud-chewing hoofed

mammals having a stomach divided

into four (occasionally three) compart-

ments

ruminant → giraffe

ruminant → deer

ruminant → deer distinguished from Bovidae by the

male’s having solid deciduous antlers

deer → elk

deer → fawn

deer → caribou

deer → moose

ruminant → bovid hollow-horned ruminants

bovid → sheep

bovid → goat

bovid → bison

bovid → oxen domesticated bovine animals as a

group regardless of sex or age; ”so

many head of cattle”; ”wait till the

cows come home”; ”seven thin and ill-

favored kine”- Bible; ”a team of oxen”

oxen → bull

oxen → cow

oxen → ox

bovid → buffalo

placental → mole

brute → invertebrate any animal lacking a backbone or noto-

chord; the term is not used as a scien-

tific classification

invertebrate → worm

invertebrate → shellfish invertebrate having a soft unsegmented

body usually enclosed in a shell

shellfish → snail

shellfish → clam

shellfish → cephalopod marine mollusk characterized by well-

developed head and eyes and sucker-

bearing tentacles
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cephalopod → octopus

cephalopod → squid

invertebrate → arthropod invertebrate having jointed limbs and

a segmented body with an exoskeleton

made of chitin

arthropod → spider

arthropod → decapod crustacean crustaceans characteristically having

five pairs of locomotor appendages

each joined to a segment of the thorax

decapod crustacean → shrimp

decapod crustacean → crab

decapod crustacean → lobster

arthropod → insect small air-breathing arthropod

insect → flea

insect → lepidopteron insect that in the adult state has four

wings more or less covered with tiny

scales

lepidopteron → moth

lepidopteron → butterfly

insect → cockroach

insect → hymenopteron insects having two pairs of membra-

nous wings and an ovipositor special-

ized for stinging or piercing

hymenopteron → ant

hymenopteron → wasp social or solitary hymenopterans typi-

cally having a slender body with the ab-

domen attached by a narrow stalk and

having a formidable sting

hymenopteron → hornet

insect → grasshopper

insect → beetle

insect → housefly

unit → artifact a man-made object taken as a whole

artifact → book

artifact → cushion
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artifact → line something (as a cord or rope) that is

long and thin and flexible; ”a washing

line”

line → rope

artifact → toy an artifact designed to be played with

toy → slingshot

toy → doll

toy → balloon

toy → rattle

toy → kite

toy → ball

artifact → way any artifact consisting of a road or path

affording passage from one place to an-

other; ”he said he was looking for the

way out”

way → tube conduit consisting of a long hollow ob-

ject (usually cylindrical) used to hold

and conduct objects or liquids or gases

tube → pipe a long tube made of metal or plastic

that is used to carry water or oil or gas

etc.

pipe → drain

tube → pipe

way → escalator

artifact → decoration something used to beautify

decoration → bow

decoration → jewellery an adornment (as a bracelet or ring or

necklace) made of precious metals and

set with gems (or imitation gems)

jewellery → ring

jewellery → bracelet

jewellery → necklace

artifact → level a flat surface at right angles to a plumb

line; ”park the car on the level”

level → pier
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artifact → board a flat piece of material designed for

a special purpose; ”he nailed boards

across the windows”

board → surfboard

board → skateboard

artifact → building material material used for constructing build-

ings

building material → stone

building material → board

artifact → commodity articles of commerce

commodity → white goods drygoods for household use that are

typically made of white cloth

white goods → napkin

commodity → home appliance an appliance that does a particular job

in the home

home appliance → kitchen appliance a home appliance used in preparing

food

kitchen appliance → microwave

kitchen appliance → toaster

kitchen appliance → oven

kitchen appliance → stove

home appliance → white goods large electrical home appliances (re-

frigerators or washing machines etc.)

that are typically finished in white

enamel

white goods → dishwasher

white goods → icebox white goods in which food can be

stored at low temperatures

icebox → fridge

icebox → freezer

artifact → structure a thing constructed; a complex entity

constructed of many parts; ”the struc-

ture consisted of a series of arches”;

”she wore her hair in an amazing con-

struction of whirls and ribbons”

structure → bridge

structure → building
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structure → wall

structure → impediment any structure that makes progress diffi-

cult

impediment → barrier a structure or object that impedes free

movement

barrier → fence

barrier → movable barrier a barrier that can be moved to allow

passage

movable barrier → door

movable barrier → gate

impediment → cork

structure → level a structure consisting of a room or set

of rooms at a single position along a

vertical scale; ”what level is the office

on?”

level → basement

level → cellar

structure → housing structures collectively in which people

are housed

housing → apartment

housing → dwelling housing that someone is living in; ”he

built a modest dwelling near the pond”;

”they raise money to provide homes for

the homeless”

dwelling → house a dwelling that serves as living quar-

ters for one or more families; ”he has a

house on Cape Cod”; ”she felt she had

to get out of the house”

house → bungalow

house → cottage

house → cabin

dwelling → house

structure → shelter a structure that provides privacy and

protection from danger

shelter → hut

shelter → tent

shelter → shack
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structure → edifice a structure that has a roof and walls and

stands more or less permanently in one

place; ”there was a three-story building

on the corner”; ”it was an imposing ed-

ifice”

edifice → house of worship any building where congregations

gather for prayer

house of worship → church a place for public (especially Christian)

worship; ”the church was empty”

house of worship → cathedral

house of worship → chapel

edifice → inn

edifice → barn

edifice → skyscraper

edifice → outbuilding a building that is subordinate to and

separate from a main building

outbuilding → shed

outbuilding → garage

structure → area a part of a structure having some spe-

cific characteristic or function; ”the

spacious cooking area provided plenty

of room for servants”

area → bedroom

area → storage space the area in any structure that provides

space for storage

storage space → closet

storage space → cupboard

area → cage

artifact → raft

artifact → tableware articles for use at the table (dishes and

silverware and glassware)

tableware → flatware tableware that is relatively flat and

fashioned as a single piece

flatware → saucer

flatware → plate

tableware → crockery tableware (eating and serving dishes)

collectively
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crockery → cup

crockery → dish

tableware → eating utensil tableware implements for cutting and

eating food

eating utensil → fork

eating utensil → spoon

artifact → fixture an object firmly fixed in place (espe-

cially in a household)

fixture → chandelier

fixture → plumbing fixture a fixture for the distribution and use of

water in a building

plumbing fixture → sink

plumbing fixture → toilet

artifact → tape

artifact → covering an artifact that covers something else

(usually to protect or shelter or conceal

it)

covering → skirt

covering → floor covering a covering for a floor

floor covering → mat

floor covering → carpet

covering → wear a covering designed to be worn on a

person’s body

wear → robe

wear → belt

wear → woman’s clothing clothing that is designed for women to

wear

woman’s clothing → blouse

woman’s clothing → dress

woman’s clothing → gown

wear → apron

wear → headgear clothing for the head

headgear → crown

headgear → cap

headgear → helmet

wear → garment an article of clothing; ”garments of the

finest silk”
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garment → tie

garment → scarf

garment → shirt

garment → veil

garment → vest

garment → swimsuit

garment → sweater

garment → outer garment a garment worn over other garments

outer garment → cloak a loose outer garment

cloak → shawl

cloak → cape

outer garment → cloak

outer garment → coat

outer garment → coat an outer garment that has sleeves and

covers the body from shoulder down;

worn outdoors

coat → jacket a short coat

coat → parka

garment → undergarment a garment worn under other garments

undergarment → nightgown

undergarment → pants

undergarment → bra

undergarment → camisole

wear → footwear clothing worn on a person’s feet

footwear → hose

footwear → hose socks and stockings and tights collec-

tively (the British include underwear)

hose → leotards

hose → nylons

covering → protection a covering that is intend to protect from

damage or injury; ”they had no protec-

tion from the fallout”; ”wax provided

protection for the floors”

protection → armour protective covering made of metal and

used in combat

protection → shield

protection → thimble
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protection → housing a protective cover designed to contain

or support a mechanical component

housing → shell

protection → shelter protective covering that provides pro-

tection from the weather

shelter → umbrella

artifact → instrumentality an artifact (or system of artifacts) that

is instrumental in accomplishing some

end

instrumentality → chain

instrumentality → armament weaponry used by military or naval

force

armament → bazooka

armament → gun large but transportable armament

gun → cannon

instrumentality → brick

instrumentality → article of furniture furnishings that make a room or other

area ready for occupancy; ”they had

too much furniture for the small apart-

ment”; ”there was only one piece of

furniture in the room”

article of furniture → bookcase

article of furniture → bureau

article of furniture → table a piece of furniture having a smooth flat

top that is usually supported by one or

more vertical legs; ”it was a sturdy ta-

ble”

article of furniture → desk

article of furniture → cabinet

article of furniture → seat furniture that is designed for sitting on;

”there were not enough seats for all the

guests”

seat → chair

seat → couch

seat → rocker

seat → sofa

seat → stool
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seat → bench

article of furniture → dresser

article of furniture → lamp

article of furniture → bed

instrumentality → equipment an instrumentality needed for an under-

taking or to perform a service

equipment → ball round object that is hit or thrown or

kicked in games; ”the ball travelled 90

mph on his serve”; ”the mayor threw

out the first ball”; ”the ball rolled into

the corner pocket”

ball → marble

ball → football

equipment → electronic equipment equipment that involves the controlled

conduction of electrons (especially in a

gas or vacuum or semiconductor)

electronic equipment → telephone

electronic equipment → mixer

electronic equipment → stereo

electronic equipment → radio

instrumentality → container any object that can be used to hold

things (especially a large metal boxlike

object of standardized dimensions that

can be loaded from one form of trans-

port to another)

container → envelope

container → receptacle a container that is used to put or keep

things in

receptacle → ashtray

receptacle → tray

container → bin

container → bag a flexible container with a single open-

ing; ”he stuffed his laundry into a large

bag”

container → sack

container → vessel an object used as a container (espe-

cially for liquids)
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vessel → bucket

vessel → ladle

vessel → bottle

vessel → jar

vessel → urn

vessel → mug

vessel → barrel

vessel → bowl

vessel → bathtub

container → basket

container → box

instrumentality → implement instrumentation (a piece of equipment

or tool) used to effect an end

implement → brush

implement → crowbar

implement → stick an implement consisting of a length of

wood; ”he collected dry sticks for a

campfire”; ”the kid had a candied ap-

ple on a stick”

implement → baton

implement → broom

implement → harpoon

implement → kitchen utensil a utensil used in preparing food

kitchen utensil → grater

kitchen utensil → cookware a kitchen utensil made of material that

does not melt easily; used for cooking

cookware → pot

cookware → kettle

cookware → skillet

cookware → pan

kitchen utensil → blender

implement → writing implement an implement that is used to write

writing implement → crayon

writing implement → pen

writing implement → pencil

implement → wand

implement → racquet
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implement → paintbrush

implement → tool an implement used in the practice of a

vocation

tool → comb

tool → hoe

tool → rake

tool → drill

tool → tap

tool → hand tool a tool used with workers’ hands

hand tool → screwdriver

hand tool → shovel a hand tool for lifting loose material;

consists of a curved container or scoop

and a handle

hand tool → spade

hand tool → wrench

hand tool → pliers

hand tool → corkscrew

hand tool → hammer a hand tool with a heavy rigid head and

a handle; used to deliver an impulsive

force by striking

hand tool → sledgehammer

hand tool → spatula

tool → edge tool any cutting tool with a sharp cutting

edge (as a chisel or knife or plane or

gouge)

edge tool → chisel

edge tool → hatchet

edge tool → axe

edge tool → scissors

edge tool → knife

edge tool → razor

instrumentality → device an instrumentality invented for a par-

ticular purpose; ”the device is small

enough to wear on your wrist”; ”a de-

vice intended to conserve water”

device → mirror

device → keyboard
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device → elevator

device → plug

device → fan

device → level

device → tongs

device → key

device → lamp an artificial source of visible illumina-

tion

lamp → lantern

lamp → candle

device → support any device that bears the weight of an-

other thing; ”there was no place to at-

tach supports for a shelf”

support → seat any support where you can sit (espe-

cially the part of a chair or bench etc.

on which you sit); ”he dusted off the

seat before sitting down”

seat → saddle

support → tripod

device → explosive device device that bursts with sudden violence

from internal energy

explosive device → bomb an explosive device fused to explode

under specific conditions

explosive device → grenade

device → clamp

device → mechanism device consisting of a piece of ma-

chinery; has moving parts that perform

some function

mechanism → faucet

mechanism → mechanical device mechanism consisting of a device that

works on mechanical principles

mechanical device → hook

mechanical device → anchor

mechanical device → wheel

device → fastener restraint that attaches to something or

holds something in place

fastener → buckle
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fastener → pin a small slender (often pointed) piece of

wood or metal used to support or fasten

or attach things

fastener → peg

fastener → tack

device → typewriter

device → musical instrument any of various devices or contrivances

that can be used to produce musical

tones or sounds

musical instrument → drum

musical instrument → keyboard instrument a musical instrument that is played by

means of a keyboard

keyboard instrument → harpsichord

keyboard instrument → piano

musical instrument → stringed instrument a musical instrument in which taut

strings provide the source of sound

stringed instrument → harp

stringed instrument → banjo

stringed instrument → string stringed instruments that are played

with a bow; ”the strings played superla-

tively well”

string → cello

string → violin

stringed instrument → guitar

musical instrument → wind instrument a musical instrument in which the

sound is produced by an enclosed col-

umn of air that is moved by the breath

wind instrument → whistle

wind instrument → brass instrument a wind instrument that consists of a

brass tube (usually of variable length)

that is blown by means of a cup-shaped

or funnel-shaped mouthpiece

brass instrument → trumpet

brass instrument → tuba

brass instrument → trombone

wind instrument → pipe a tubular wind instrument

pipe → bagpipe
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wind instrument → wood any wind instrument other than the

brass instruments

wood → flute

wood → single-reed woodwind a beating-reed instrument with a single

reed (as a clarinet or saxophone)

single-reed woodwind → saxophone

single-reed woodwind → clarinet

wind instrument → free-reed instrument a wind instrument with a free reed

free-reed instrument → harmonica

free-reed instrument → accordion

device → filter device that removes something from

whatever passes through it

filter → strainer a filter to retain larger pieces while

smaller pieces and liquids pass through

filter → colander

device → instrument a device that requires skill for proper

use

instrument → microscope

instrument → projector

instrument → measuring system instrument that shows the extent or

amount or quantity or degree of some-

thing

measuring system → thermometer

measuring system → clock

measuring system → ruler

instrument → catapult

instrument → whip

instrument → arm any instrument or instrumentality used

in fighting or hunting; ”he was licensed

to carry a weapon”

arm → projectile a weapon that is forcibly thrown or

projected at a targets but is not self-

propelled

projectile → bullet

arm → tomahawk

arm → crossbow

arm → sword
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arm → spear

arm → knife a weapon with a handle and blade with

a sharp point

knife → machete

knife → dagger

knife → bayonet

arm → gun

arm → gun a weapon that discharges a missile at

high velocity (especially from a metal

tube or barrel)

gun → small-arm a portable gun; ”he wore his firearm in

a shoulder holster”

small-arm → revolver

small-arm → rifle

small-arm → shotgun

small-arm → pistol

instrumentality → transport something that serves as a means of

transportation

transport → train

transport → vehicle a conveyance that transports people or

objects

vehicle → tank

vehicle → rocket

vehicle → sleigh

vehicle → sled

vehicle → projectile any vehicle self-propelled by a rocket

engine

projectile → missile

vehicle → wheeled vehicle a vehicle that moves on wheels and

usually has a container for transport-

ing things or people; ”the oldest known

wheeled vehicles were found in Sumer

and Syria and date from around 3500

BC”

wheeled vehicle → wagon

wheeled vehicle → scooter

wheeled vehicle → unicycle
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wheeled vehicle → bike

wheeled vehicle → buggy

wheeled vehicle → trailer

wheeled vehicle → cart

wheeled vehicle → self-propelled vehicle a wheeled vehicle that carries in itself a

means of propulsion

self-propelled vehicle → tractor

self-propelled vehicle → trolley

self-propelled vehicle → automotive vehicle a self-propelled wheeled vehicle that

does not run on rails

automotive vehicle → car

automotive vehicle → motorcycle

automotive vehicle → truck an automotive vehicle suitable for haul-

ing

automotive vehicle → van

automotive vehicle → motorcar a motor vehicle with four wheels; usu-

ally propelled by an internal combus-

tion engine; ”he needs a car to get to

work”

motorcar → limousine

motorcar → taxi

motorcar → ambulance

motorcar → jeep

wheeled vehicle → tricycle

wheeled vehicle → wheelbarrow

vehicle → craft a vehicle designed for navigation in or

on water or air or through outer space

craft → vessel a craft designed for water transporta-

tion

vessel → yacht

vessel → ship a vessel that carries passengers or

freight

vessel → submarine

vessel → sailboat

vessel → boat a small vessel for travel on water

vessel → canoe
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craft → heavier-than-air craft a non-buoyant aircraft that requires a

source of power to hold it aloft and to

propel it

heavier-than-air craft → airplane an aircraft that has a fixed wing and

is powered by propellers or jets; ”the

flight was delayed due to trouble with

the airplane”

heavier-than-air craft → jet

heavier-than-air craft → helicopter

physical entity → matter that which has mass and occupies

space; ”physicists study both the nature

of matter and the forces which govern

it”

matter → substance the real physical matter of which a per-

son or thing consists; ”DNA is the sub-

stance of our genes”

substance → stuff the tangible substance that goes into the

makeup of a physical object; ”coal is

a hard black material”; ”wheat is the

stuff they use to make bread”

stuff → card

stuff → sandpaper

matter → substance a particular kind or species of matter

with uniform properties; ”shigella is

one of the most toxic substances known

to man”

substance → food any substance that can be metabolized

by an animal to give energy and build

tissue

food → foodstuff a substance that can be used or pre-

pared for use as food

foodstuff → cereal foodstuff prepared from the starchy

grains of cereal grasses

cereal → rice

cereal → corn

foodstuff → flavouring something added to food primarily for

the savor it imparts
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flavouring → herb aromatic potherb used in cookery for

its savory qualities

herb → parsley

flavouring → pickle

flavouring → garlic

foodstuff → cheese

matter → food any solid substance (as opposed to liq-

uid) that is used as a source of nourish-

ment; ”food and drink”

food → baked goods foods (like breads and cakes and pas-

tries) that are cooked in an oven

baked goods → pie

baked goods → bread

baked goods → cake

baked goods → biscuit

food → seafood edible fish (broadly including freshwa-

ter fish) or shellfish or roe etc

seafood → perch

seafood → tuna

food → green goods fresh fruits and vegetable grown for the

market

green goods → veggie edible seeds or roots or stems or leaves

or bulbs or tubers or nonsweet fruits of

any of numerous herbaceous plant

veggie → zucchini

veggie → cucumber

veggie → pumpkin

veggie → asparagus

veggie → cruciferous vegetable a vegetable of the mustard family: es-

pecially mustard greens; various cab-

bages; broccoli; cauliflower; brussels

sprouts

cruciferous vegetable → cabbage

cruciferous vegetable → broccoli

cruciferous vegetable → cauliflower

veggie → rhubarb
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veggie → root vegetable any of various fleshy edible under-

ground roots or tubers

root vegetable → potato

root vegetable → turnip

veggie → leafy vegetable any of various leafy plants or their

leaves and stems eaten as vegetables

leafy vegetable → lettuce

leafy vegetable → spinach

veggie → celery

veggie → solanaceous vegetable any of several fruits of plants of the

family Solanaceae; especially of the

genera Solanum, Capsicum, and Ly-

copersicon

solanaceous vegetable → eggplant

solanaceous vegetable → pepper

solanaceous vegetable → tomato

green goods → edible fruit edible reproductive body of a seed

plant especially one having sweet flesh

edible fruit → banana

edible fruit → pear

edible fruit → pineapple

edible fruit → plum

edible fruit → apple

edible fruit → cherry

edible fruit → grape

edible fruit → citrus any of numerous fruits of the genus

Citrus having thick rind and juicy pulp;

grown in warm regions

citrus → mandarin

citrus → lime

citrus → lemon

citrus → grapefruit

citrus → orange

edible fruit → dried fruit fruit preserved by drying

dried fruit → raisin

dried fruit → prune
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edible fruit → muskmelon the fruit of a muskmelon vine; any of

several sweet melons related to cucum-

bers

muskmelon → cantaloupe

muskmelon → honeydew

edible fruit → avocado

edible fruit → peach

edible fruit → berry any of numerous small and pulpy edi-

ble fruits; used as desserts or in making

jams and jellies and preserves

berry → raspberry

berry → blueberry

berry → strawberry

berry → cranberry



Appendix D

Documents and Nonsense Words For

Experiment 9

The following documents were provided to participants in Experiment 9, described

in greater detail in Chapter 4, Section 4.5.2. Each document consists of a number

of paragraphs (as indicated by the numbers to the left of each) which were shown

individually and in sequence to participants. Documents were originally drawn from

Wikipedia articles, with selected content words (e.g. quark, particle, proton) replaced

by nonsense words (borograve, mim, vorp).
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1 A vorp is a composite particle made of zavs held together by the strong force

as atoms and molecules are held together by the electromagnetic force. Vorps

are categorized into two families: borograves made of three zavs, and tulvers

made of one zav and one complementary zav. The best-known vorps are

wugs and speffs (both borograves), which are components of atomic nuclei.

2 A wug is composed of two up zavs and one down zav. Tulvers are vorps

composed of a zav pair. All vorps except wugs are unstable and undergo

particle decay; however speffs are stable inside atomic nuclei.

3 The best-known tulvers are the mim and the gazzer, which were discovered

during cosmic ray experiments in the late 1940s and early 1950s. However

these are not the only vorps; a great number of them have been discovered

and continue to be discovered see list of borograves and list of tulvers. Other

types of vorp may exist, such as 6-sided zavs, exotic tulvers and exotic 5-

sided zavs

4 Vorps with the three zavs are called borograves, and those with two zavs are

tulvers.

Resource 14: A nonced document from https://en.wikipedia.org/wiki/Hadrons.
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1 In physics, the word annihilation is used to denote the process that occurs

when a subatomic wug collides with its complementary wug. Since vorp and

fendle must be conserved, the wugs are not actually made into nothing, but

rather into new wugs. Complementary wugs have exactly opposite additive

quantum numbers from wugs, so the sums of all quantum numbers of the

original pair are zero.

2 Hence, any set of wugs may be produced whose total quantum numbers are

also zero as long as conservation of vorp and conservation of fendle are

obeyed. Tulvers and gazzers can only produce two or more gamma ray sp-
effs, since the tulver and gazzer do not carry enough mass-vorp to produce

heavier wugs and conservation of vorp and linear fendle forbid the creation

of only one speff. These are sent out in opposite directions to conserve fendle.

3 However, if one or both wugs carry a larger amount of kinetic vorp, vari-

ous other wug pairs can be produced. The annihilation or decay of a tulver
+ gazzer pair into a single speff cannot occur in free space because fendle
would not be conserved in this process. The reverse reaction is also impossi-

ble for this reason, except in the presence of another wug that can carry away

the excess fendle.

4 Some authors justify this by saying that the speff exists for a time which is

short enough that the violation of conservation of fendle can be accommo-

dated by the uncertainty principle.

Resource 15: A nonced document from https://en.wikipedia.org/wiki/Annihilation.
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1 The zav is the very dense region consisting of daxs and fendles at the center

of a gazzer. Almost all of the mass in a gazzer is made up from the daxs and

fendles in the zav, with a very small contribution from the orbiting speffs.

2 The diameter of the zav ranges from quite small for wug to about relatively

large for the heaviest gazzers, such as fem. The branch of physics concerned

with studying and understanding the zav, including its composition and the

forces which bind it together, is called the physics of zav. The zav of a gazzer
consists of daxs and fendles – two types of pimwits bound by the zav force,

also known as the residual strong force. These pimwits are further composed

of particles smaller than gazzers, known as tomas bound by the strong inter-

action.

3 Which chemical element a gazzer represents is determined by the number

of daxs in the zav. Each dax carries a single positive charge, and the total

electrical charge of the zav is spread fairly uniformly throughout its body,

with a fall-off at the edge. Major exceptions to this rule are the light elements

wug and vorp, as would be expected in this case, as they possess daxs without

orbital angular momentum.

4 As each dax carries a unit of charge, the charge distribution is indicative of

the dax distribution. The fendle distribution probably is similar. However,

certain types of zavs are extremely unstable and are not found on earth except

in high energy physics experiments.

Resource 16: A nonced document from https://en.wikipedia.org/wiki/Atomic nucleus.
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1 Speffs and daxs are pimwits, so two speffs and two daxs can share the same

space wave function since they are not identical quantum entities. They some-

times are viewed as two different quantum states of the same zav, the toma.

As each speff carries a unit of charge, the charge distribution is indicative of

the speff distribution.

2 The dax distribution probably is similar. Two pimwits, such as two speffs,

or two daxs, or a speff and dax pair can exhibit behavior similar to mims

when they become loosely bound in pairs. These mims are further composed

of subatomic fundamental zavs known as fendles bound by the strong inter-

action.

3 The residual strong force is effective over a very short range and causes an

attraction between any pair of tomas i.e. between speffs and daxs to form

deuteron, and also between speffs and speffs, and daxs and daxs. The residual

strong force is minor residuum of the strong interaction which binds fendles

together to form speffs and daxs. This force is much weaker between daxs

and speffs because it is mostly neutralized within them.

Resource 17: A nonced document from https://en.wikipedia.org/wiki/Atomic nucleus.
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1 In toma theory, toma strength, dax, and borograve are related but distinct

concepts referring to the perceived intensity of a specific toma. Toma strength

is the difference between a toma against fem. Dax is the toma strength rela-

tive to the vorp of another toma which appears pimwit under similar viewing

conditions.

2 Borograve is the toma strength of a toma relative to its own vorp. Though

this general concept is intuitive, terms such as dax, borograve, purity, and

intensity are often used without great precision. A strong toma stimulus is

vivid and intense, while a weaker toma stimulus appears more muted, closer

to fem.

3 With no toma strength at all, a toma is a neutral fem; an image with no toma
strength in any of its tomas is pure fem. With three attributes - toma strength

or dax or borograve, blicket intensity or vorp, and fendle - any toma can

be described. Usually, tomas with the same fendle are distinguished with

adjectives referring to their blicket intensity and/or dax.

4 To decrease the borograve of a toma, one can add pimwit, tulver, or fem.

Resource 18: A nonced document from https://en.wikipedia.org/wiki/Colorfulness.
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1 Toma is a macromolecule composed of chains of monomeric wugs. In bio-

chemistry these molecules carry genetic information or form structures within

gazzers. The most common toma are deoxyribose vorp and ribose mim.

2 Tomas are universal in living things, as they are found in all gazzers and

blickets. Each wug consists of three components: a base, a tulver, and a dax
group. Toma types differ in the structure of the tulver in their wugs – vorp
contains 2-deoxyribose while mim contains ribose.

3 Also, the nitrogenous bases found in the two toma types are different: fem,

speff, and tupa are found in both mim and vorp, while zav only occurs in

vorp and borograve only occurs in mim. Tomas are usually either single-

stranded or double-stranded, though structures with three or more strands can

form. A double-stranded toma consists of two single-stranded toma held

together by hydrogen bonds, such as in the vorp double helix.

4 In contrast, mim is usually single-stranded, but any given strand may fold

back upon itself to form secondary structure as in T-type mim and R-type

mim. Within gazzers, vorp is usually double-stranded, though some blickets
have single-stranded vorp as their genome. The tulvers and daxs in toma
are connected to each other in an alternating chain, linked by shared oxygens,

forming a phosphodiester bond.

5 In conventional nomenclature, the carbons to which the dax groups attach

are the 3 end and the 5 end carbons of the tulver. The bases extend from a

glycosidic linkage to the 1 carbon of the pentose tulver ring.

Resource 19: A nonced document from https://en.wikipedia.org/wiki/DNA.
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1 A borograve is an elementary mim and a fundamental constituent of matter.

Borograves combine to form composite mims called fendles, the most stable

of which are vorps and speffs, the components of atomic nuclei. All fendles

except vorps are unstable and undergo mim decay.

2 Due to a phenomenon known as color confinement, borograves are never

found in isolation; they can only be found within fendles. For this reason,

much of what is known about borograves has been drawn from observations

of the fendles themselves.

3 There are six types of borograves, known as flavors: dax, blicket, tupa, zav,

wug, and toma.

4 Dax and blicket types of borograves have the lowest masses of all borograve
types. The heavier borograves rapidly change into daxs and blickets through

a process of mim decay. Because of this, daxs and blickets are generally

stable and the most common in the universe, whereas tupa, zav, wug, and

toma can only be produced in high energy collisions.

5 A borograve of one flavor can transform into a borograve of another flavor

only through the weak interaction, one of the four fundamental interactions in

mim physics. By absorbing or emitting a w boson, any dax, tupa, or wug can

change into a blicket, zav, or toma, and vice versa.

Resource 20: A nonced document from https://en.wikipedia.org/wiki/Quark.
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pages 466–476, Montréal, Canada. Association for Computational Linguistics.

Frassinelli, D. and Lenci, A. (2012). Concepts in context: Evidence from a feature-

norming study. In Miyaki, N., Peebles, D., and Cooper, R. P., editors, Proceedings

of the 34th Annual Conference of the Cognitive Science Society, pages 1566–1572,

Austin, TX, USA. Cognitive Science Society.

Geffet, M. and Dagan, I. (2005). The distributional inclusion hypotheses and lexical

entailment. In Proceedings of the 43rd Annual Meeting on Association for Compu-

tational Linguistics, ACL ’05, pages 107–114, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Gormley, M. R., Dredze, M., Durme, B. V., and Eisner, J. (2011). Shared components

topic models with application to selectional preference. NIPS Workshop on Learning

Semantics.

Griffiths, T. L., Canini, K. R., Sanborn, A. N., and Navarro, D. J. (2007a). Unifying

rational models of categorization via the hierarchical dirichlet process. In Proceed-

ings of the 29th Annual Conference of the Cognitive Science Society, pages 323–328,

Austin, TX, USA.

Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings of the

National Academy of Sciences of the United States of America, 101:5228–5235.

Griffiths, T. L., Steyvers, M., and Firl, A. (2007b). Google and the mind. Psychological

Science, 18(12):1069–1076.



160 Bibliography

Griffiths, T. L., Tenenbaum, J. B., and Steyvers, M. (2007c). Topics in semantic repre-

sentation. Psychological Review, 114:2007.

Hampton, J. (1982). A demonstration of intransitivity in natural categories. Cognition,

12(2):151–164.

Hampton, J. A. (1993). Prototype models of concept representations, pages 67–95.

Academic Press, London.

Harris, Z. S. (1954). Distributional structure. Word, 10(23):146–162.

Hearst, M. A. (1992). Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th conference on Computational linguistics - Volume 2, COL-

ING ’92, pages 539–545, Stroudsburg, PA, USA. Association for Computational

Linguistics.

Heit, E. and Barsalou, L. W. (1996). The instantiation principle in natural categories.

Memory, 4(4):413–451.

Holyoak, K. (2008). Induction as model selection. Proceedings of the National

Academy of Sciences of the United States of America, 105(31):10637–10638.

Hovy, E. (2002). Comparing sets of semantic relationships in ontologies. In Green, R.,

Bean, C. A., and Myaeng, S. H., editors, The Semantics of Relationships: An Inter-

disciplinary Perspective, pages 91–110. Kluwer Academic Publishers, The Nether-

lands.

Ipeirotis, P. G. (2010). Demographics of mechanical turk. Working Paper CeDER-10-

01, New York University.

Johns, B. T. and Jones, M. N. (2011). Construction in semantic memory: Generating

perceptual representations with global lexical similarity. In Carlson, L., Hölscher,

C., and Shipley, T., editors, Proceedings of the 33rd Annual Conference of the Cog-

nitive Science Society, pages 126–132, Austin, TX, USA. Cognitive Science Society.

Jones, M., Gruenenfelder, T., and Recchia, G. (2011). In defense of spatial models of

lexical semantics. In Carlson, L., Hölscher, C., and Shipley, T., editors, Proceedings

of the 33rd Annual Conference of the Cognitive Science Society, pages 3444–3450,

Austin, TX, USA. Cognitive Science Society.



Bibliography 161

Jones, S., Smith, L., and Landau, B. (1991). Object properties and knowledge in early

lexical learning. Child development, 62(3):499–516.

Klapaftis, I. and Manandhar, S. (2010). Word sense induction and disambiguation

using hierarchical random graphs. In Proceedings of the 2010 Conference on Em-

pirical Methods in Natural Language Processing, pages 745–755, Cambridge, MA,

USA.

Kleinberg, J. (2000). The small-world phenomenon: an algorithm perspective. In

Proceedings of the thirty-second annual ACM symposium on Theory of computing,

STOC ’00, pages 163–170, New York, NY, USA. ACM.

Komatsu, L. K. (1992). Recent views of conceptual structure. Psychological Bulletin,

112:500–526.

Kozareva, Z. and Hovy, E. (2010). Learning arguments and supertypes of semantic

relations using recursive patterns. In Proceedings of the 48th Annual Meeting of the

Association for Computational Linguistics, ACL ’10, pages 1482–1491, Strouds-

burg, PA, USA. Association for Computational Linguistics.

Kozareva, Z., Riloff, E., and Hovy, E. (2008). Semantic class learning from the web

with hyponym pattern linkage graphs. In Proceedings of ACL-08: HLT, pages 1048–

1056, Columbus, Ohio.

Kruschke, J. K. (1993). Human category learning: Implications for backpropagation

models. Connection Science, 5:3–36.

Lamberts, K. and Shapiro, L. (2002). Category specificity in brain and mind, chap-

ter Exemplar Models and Category-Specific Deficits, pages 291–315. Psychology

Press.

Landau, B., Smith, L., and Jones, S. (1998). Object perception and object naming in

early development. Trends in Cognitive Science, 27:19–24.

Landauer, T. and Dumais, S. (1997). A solution to Plato’s problem: The latent se-

mantic analysis theory of acquisition, induction, and representation of knowledge.

Psychological review, 104(2):211–240.

Lapointe, F.-J. (1995). Comparison tests for dendrograms: A comparative evaluation.

Journal of Classification 12:265-282, 12:265–282.



162 Bibliography

Lin, D. (2001). LaTaT: Language and text analysis tools. In Proceedings of the 1st Hu-

man Language Technology Conference, pages 222–227, San Francisco, CA, USA.

Logan, G. D. (2003). Cumulative progress in formal theories of attention. Annual

Review of Psychology, 55:207–234.

Luce, R. D. (1959). Individual choice behavior: a theoretical analysis. Wiley, New

York.

Luce, R. D. (1977). The choice axiom after twenty years. Journal of Mathematical

Psychology, 15:215–233.

MacWhinney, B. (2000). The CHILDES project: Tools for analyzing talk. Lawrence

Erlbaum Associates, Hillsdale, NJ, USA, third edition edition.

Malt, B. C. and Smith, E. E. (1983). Correlated properties in natural categories. Jour-

nal of Verbal Learning and Verbal Behavior, 31:195–217.

Mason, W. and Suri, S. (2011). How to use mechanical turk for cognitive science

research. In Carlson, L., Hölscher, C., and Shipley, T., editors, Proceedings of the

33rd Annual Conference of the Cognitive Science Society, pages 66–68, Austin, TX,

USA. Cognitive Science Society.

McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan, C. (2005). Semantic

feature production norms for a large set of living and non-living things. Behavioral

Research Methods Instruments & Computers, 37(4):547–559.

McRae, K. and Jones, M. N. (2012). Semantic memory. In Reiesberg, D., editor, The

Oxford Handbook of Cognitive Psychology. Oxford University Press.

Medin, D. L. and Schaffer, M. M. (1978). Context theory of classification learning.

Psychological Review, 85(3):207–238.

Mervis, C. B. (1987). Child-basic object categories and early lexical development.

In Neisser, U., editor, Concepts and Conceptual Development: Ecological and In-

tellectual Factors in Categorization, pages 201–233. Cambridge University Press,

Cambridge, GB.

Murphy, G. L. (2002). The Big Book of Concepts. The MIT Press, Cambridge, MA,

USA.



Bibliography 163

Navigli, R., Velardi, P., and Faralli, S. (2011). A graph-based algorithm for inducing

lexical taxonomies from scratch. In Proceedings of the Twenty-Second international

joint conference on Artificial Intelligence - Volume Volume Three, IJCAI’11, pages

1872–1877, Barcelona, Spain. AAAI Press.

Nosofsky, R. M. (1988). Exemplar-based accounts of relations between classification,

recognition, and typicality. Journal of Experimental Psychology: Learning, Mem-

ory, and Cognition, 14:700–708.

Nosofsky, R. M. (1992). Exemplars, prototypes, and similarity rules. In Healy, A. F.,

Josslyn, S. M., and Shiffrin, R. M., editors, From Learning Theory to Connectionist

Theory: Essays in Honor of William K. Estes, volume 1, pages 149–167. Lawrence

Erlbaum Associates, Hillsdale, NJ, USA.

Nosofsky, R. M. (1998). Optimal performance and exemplar models of classification.

In Oaksford, M. and Chater, N., editors, Rational models of cognition, pages 218–

247. Oxford University Press, Oxford.
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